

 Distributed Time, Conservative

Parallel Logic Simulation on GPUs
Bo Wang1, Yuhao Zhu2, Yangdong Deng1

1 Tsinghua University, 2 Beihang University

2
2

Outline

 Motivation

 Background

 Parallel Logic Simulator

 Experiments

 Conclusion

3
3

Motivation

 Simulation has become a bottleneck for circuit design

 60~80 % of design effort is now dedicated to verification[1]

 Example: the logic simulation of a billion-transistor design could

take over one month to finish[2]

[3] Brian Bailey, A new vision of 'scalable' verification,

http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=18400907

[4] “Functional Verification on Large ASICs” by Adrian Evans, etc., 35th DAC, June 1998.

[2] ESNUG Industry Discussion, Dec 2003, http://www.deepchip.com/items/0421-01.html

[1] Chien-Nan Liu, SoC Verification Methodology, Oct 2003

Figure 2. Breakdown of Effort [4] Figure 1. Verification Gap [3]

4
4

Types of simulations

 Behavioral level simulation

 Register transfer level simulation

 Gate level simulation

 Transistor level simulation

é

5
5

Outline

 Motivation

 Background

 Parallel Logic Simulator

 Experiments

 Conclusion

6
6

New platform

 General-Purpose Graphic Processing Unit (GPGPU)

7
7

GPU architecture (NVIDIA GTX280)

 30 multi-processors, 240 streaming processors

 1024 MB GDDR3, 141.7GB/s

 933 GFlops

8
8

Simulation algorithms

 Oblivious algorithm

 All gates are evaluated at each cycle

 Simple, efficient static gate scheduling

 Inefficient due to redundant evaluation

 Event-driven algorithm

 A gate is simulated only if its input value changes

 Synchronous

ÅEvents simulated simultaneously have the same simulation time.

 Asynchronous

ÅEvents having different simulation time can be simulated

simultaneously

ÅChandy-Misra-Bryant algorithm

9
9

Simulation algorithms (cnt.)

 Chandy-Misra-Bryant algorithm

 Event-driven

 Asynchronous

 Conservative

 Parallel and distributed
a=1@9ns

d=1@15ns

e=1@13ns

a

b

c

d

f

g

e f=1@10ns

g=0@14ns

c=0@12ns

b=1@12ns

Asynchronous

e=0@0ns

Assume the gate delay of NANDs is 1ns

e=0@0ns

e=0@0ns

e=1@13ns

10
10

Algorithm revisited

Primary input (stimuli)

Gate output

Gate input Evaluate

 Each round

 Stimuli are fetched from primary inputs to the gate inputs

 Gate outputs are sent to the gate inputs

 Events arriving at a gate are stored in a priority queue w.r.t. timestamp

 Each gate evaluate the event with the smallest timestamp if possible

11
11

Outline

 Motivation

 Background

 Parallel Logic Simulator

 Experiments

 Conclusion

12
12

Basic simulation flow
while not finish

 // kernel 1: primary input update

 for each primary input(PI) do

 extract the first message in the PI queue;

 insert the message into the PI output array;

 end for each

 // kernel 2: input pin update

 for each input pin do

 insert messages from output array to input pin;

 end for each

 // kernel 3: gate evaluation

 for each gate do

 extract the earliest message from its pins;

 evaluate the message and update gate status;

 write the gate output to the output array;

end while

kernel 1: primary input update

primary-input-level parallelism

kernel 2: input pin update

input-pin-level parallelism

kernel 3: gate evaluation

gate-level parallelism

a

b

c

d

f

g

e

h

i

j

k

13
13

Priority queue transformation

Problem : Maintenance of priority queue on GPU is inefficient

•In the original CMB algorithm, each gate stores the events arriving at all its

inputs in a centralized priority queue w.r.t. the timestamp.

•Maintenance of priority queue introduces many branches, which are

inefficient for SIMD-like GPU model.

Solution

•Divide the priority queue of a gate into multiple FIFOs w.r.t. its input pins

12,2,0

13,1,0

17,1,1

20,2,1

input 1

input 2

output

ŀ

top

bottom

ŀ bottom

top

12,2,0

13,1,0

17,1,1

20,2,1

input 1

input 2

output

ŀ

top

bottom

time = 20

source pin = 2

value = 1

15
15

Dynamic memory management

 Problem :

Memory demands of each pin_FIFOs are very different

•#messages on each gate vary drastically

•#messages on the same gate varies from time to time

•Static memory pre-allocation is inefficient

 Solution : Memory paging on GPUs

•A memory paging mechanism is introduced for the management.

•GPU-friendly allocate and release methods are provided.

16
16

Maintained by CPU

Dynamic memory management

20

1

1 7 12

20

1272

19

9 10

282422 23

4 5 6 8 10 11 13 14 150

17 18 21 25 26 27 29 30 3116

...

20

12

FIFO for pin[i]

size
*page_queue
head_page
tail_page
head_offset
tail_offset

6 4 8 1350 11

page_to_release 3 - - --- -

page_to_allocate

3

3

main memory

release page

allocate page

16 15 17 211814 ...

available_pages

page queue

3

17
17

GPU/CPU co-processing
 Problem: memory management needs CPU assistance

 Sequential execution

 Overhead of memory copy

 Solution: GPU/CPU Co-processing

 Overlap update_pin(GPU) with update page_to_release(CPU)

 Overlap evaluate_gate(GPU) with update page_to_allocate(CPU)

 Adopt zero-copy in CUDA

update PI update pin evaluate gate

update

page_to_release

update

page_to_allocate

GPU execution

CPU execution

zero copy

access page_to_allocate access page_to_release

18
18

Performance optimization

 Memory optimization

 Coalesced access

ÅAOS(Array-of-Structure)  SOA(Structure-of-Array)

 Hierarchical memory : locality

ÅTexture memory : circuit topological information

ÅConstant memory: truth table

 Gate reordering

 Reducing branches

ÅGates sharing the same inputs are closer to each other

ÅGates of the same type are closer to each other

19
19

Outline

 Motivation

 Background

 Parallel Logic Simulator

 Experiments

 Conclusion

20
20

Experiments
 Platform

 Intel Core 2 Duo E6750 2.66 GHz

Memory : DDR2 4GB

 NVIDIA GTX 280 (DDR3 1GB)

 Baseline

 A synchronous event-driven simulator on single core

 Test cases

 ITC99

 OpenCores

DESIGN #GATES #PINS DESCRIPTION

AES 14511 35184 AES encryption core

DES 61203 138419 DES3 ENCRYPTION CORE

M1 17700 42139 3-stage pipelined ARM core

SHA1 6212 13913 Secure Hashing algorithm core

R2000 10451 27927 MIPS 2000 CPU core

JPEG 117701 299663 JPEG image encoder

B18 78051 158127
2 Viper processors and 6 80386

processors

NOC 71333 181793 Network-on-Chip simulator

21
21

Performance

Design
Simulated

cycles

CPU simulation

time (s)

GPU simulation

time (s)
Speedup

AES 42,935,000 109.90 4.45 24.7

DES3 30,730,000 183.11 4.50 40.7

SHA1 2,275,000 56.66 0.41 138.2

R2000 28,678,308 9.20 3.15 2.9

JPEG 26,132,000 136.33 43.09 3.2

NOC 1,000,000 5389.42 347.95 15.5

M1 99,998,019 118.48 22.43 5.3

b18 19,125,000 37.30 11.49 3.3

Speedup is closed related to the stimuli density!

22
22

Irregular distribution of events

 Irregularity

 some pins are very hot, some are very cold

 Testcase

 50,000 simulation cycles with random stimuli

Peak number of

messages
DES3 R2000 M1 JPEG NOC

0-9 68170 15747 24788 178728 157891

10-99 63895 11567 16506 117820 23297

100-999 3960 53 663 2913 590

1000-9999 2253 2 3 202 0

10000-50000 85 0 4 0 15

23
23

Outline

 Motivation

 Background

 Parallel Logic Simulator

 Experiments

 Conclusion

24
24

Conclusion

 Parallel Logic Simulator on GPUs

 Developed a GPU-friendly CMB algorithm

 Designed efficient dynamic memory management

 Utilized GPU/CPU co-processing to hide overhead

 Achieved high performance

 Future works

 Study the scalability on industry-strength circuits

 Apply the techniques to system and RTL simulations

25
25

THANK YOU!

