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Motivation 

 Simulation has become a bottleneck for circuit design 

 60~80 % of design effort is now dedicated to verification[1] 

 Example: the logic simulation of a billion-transistor design could 

take over one month to finish[2] 

[3] Brian Bailey, A new vision of 'scalable' verification,    

http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=18400907 

[4] “Functional Verification on Large ASICs” by Adrian Evans, etc., 35th DAC, June 1998. 

[2] ESNUG Industry Discussion, Dec 2003, http://www.deepchip.com/items/0421-01.html 

[1] Chien-Nan Liu, SoC Verification Methodology, Oct 2003 

Figure 2. Breakdown of Effort [4] Figure 1. Verification Gap [3] 
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Types of simulations 

 Behavioral level simulation 

 Register transfer level simulation 

 Gate level simulation 

 Transistor level simulation 

é 
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New platform 

 General-Purpose Graphic Processing Unit (GPGPU) 
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GPU architecture (NVIDIA GTX280) 

 30 multi-processors, 240 streaming processors 

 1024 MB GDDR3, 141.7GB/s 

 933 GFlops 
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Simulation algorithms 

 Oblivious algorithm 

 All gates are evaluated at each cycle 

 Simple, efficient static gate scheduling 

 Inefficient due to redundant evaluation 

 Event-driven algorithm 

 A gate is simulated only if its input value changes 

 Synchronous 

ÅEvents simulated simultaneously have the same simulation time. 

 Asynchronous 

ÅEvents having different simulation time can be simulated 

simultaneously 

ÅChandy-Misra-Bryant algorithm 
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Simulation algorithms (cnt.) 

 Chandy-Misra-Bryant algorithm 

  Event-driven 

  Asynchronous 

  Conservative 

  Parallel and distributed 
a=1@9ns 

d=1@15ns 

e=1@13ns 

a 

b 

c 

d 

f 

g 

e f=1@10ns 

g=0@14ns 

c=0@12ns 
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Asynchronous  

e=0@0ns 

Assume the gate delay of NANDs is 1ns 

e=0@0ns 

e=0@0ns 

e=1@13ns 
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Algorithm revisited 

Primary input (stimuli) 

Gate output 

Gate input Evaluate 

 

 

 

 

 

 

 Each round 

 Stimuli are fetched from primary inputs to the gate inputs 

 Gate outputs are sent to the gate inputs 

 Events arriving at a gate are stored in a priority queue w.r.t. timestamp 

 Each gate evaluate the event with the smallest timestamp if possible 
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Basic simulation flow 
while not finish 

    // kernel 1: primary input update 

    for  each primary input(PI) do 

        extract the first message in the PI queue; 

        insert the message into the PI output array; 

    end for each 

    // kernel 2: input pin update 

    for  each input pin do 

       insert messages from output array to input pin; 

    end for each 

    // kernel 3: gate evaluation 

    for  each gate do 

        extract the earliest message from its pins; 

        evaluate the message and update gate status; 

        write the gate output to the output array; 

end while 

kernel 1: primary input update 

primary-input-level parallelism 

kernel 2: input pin update 

input-pin-level parallelism 

kernel 3: gate evaluation 

gate-level parallelism 
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Priority queue transformation 

Problem : Maintenance of priority queue on GPU is inefficient 

•In the original CMB algorithm, each gate stores the events arriving at all its 

inputs in a centralized priority queue w.r.t. the timestamp. 

•Maintenance of priority queue introduces many branches, which are 

inefficient for SIMD-like GPU model. 

Solution 

•Divide the priority queue of a gate into multiple FIFOs w.r.t. its input pins 
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Dynamic memory management 

 Problem :  

Memory demands of each pin_FIFOs are very different 

•#messages on each gate vary drastically 

•#messages on the same gate varies from time to time 

•Static memory pre-allocation is inefficient 

 

 Solution : Memory paging on GPUs 

•A memory paging mechanism is introduced for the management. 

•GPU-friendly allocate and release methods are provided. 



16 
16 

Maintained by CPU 

Dynamic memory management 
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GPU/CPU co-processing 
 Problem: memory management needs CPU assistance 

 Sequential execution 

 Overhead of memory copy 

 Solution: GPU/CPU Co-processing 

 Overlap update_pin(GPU) with update page_to_release(CPU) 

 Overlap evaluate_gate(GPU) with update page_to_allocate(CPU) 

 Adopt zero-copy in CUDA 

update PI update pin evaluate gate

update 

page_to_release

update 

page_to_allocate

GPU execution

CPU execution

zero copy

access page_to_allocate access page_to_release
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Performance optimization 

 Memory optimization 

 Coalesced access 

ÅAOS(Array-of-Structure)  SOA(Structure-of-Array) 

 Hierarchical memory : locality 

ÅTexture memory : circuit topological information 

ÅConstant memory: truth table 

 Gate reordering 

 Reducing branches 

ÅGates sharing the same inputs are closer to each other 

ÅGates of the same type are closer to each other 
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Experiments 
 Platform 

 Intel Core 2 Duo E6750 2.66 GHz 

Memory : DDR2 4GB 

 NVIDIA GTX 280 (DDR3 1GB) 

 Baseline 

 A synchronous event-driven simulator on single core 

 Test cases 

 ITC99 

 OpenCores 

DESIGN #GATES #PINS DESCRIPTION  

AES 14511 35184 AES encryption core 

DES 61203 138419 DES3 ENCRYPTION CORE 

M1 17700 42139 3-stage pipelined ARM core 

SHA1 6212 13913 Secure Hashing algorithm core 

R2000 10451 27927 MIPS 2000 CPU core 

JPEG 117701 299663 JPEG image encoder 

B18 78051 158127 
2 Viper processors and 6 80386 

processors 

NOC 71333 181793 Network-on-Chip simulator 
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Performance 

Design 
Simulated 

cycles 

CPU simulation 

time (s) 

GPU simulation 

time (s) 
Speedup 

AES 42,935,000 109.90 4.45 24.7 

DES3 30,730,000 183.11 4.50 40.7 

SHA1 2,275,000 56.66 0.41 138.2 

R2000 28,678,308 9.20 3.15 2.9 

JPEG 26,132,000 136.33 43.09 3.2 

NOC 1,000,000 5389.42 347.95 15.5 

M1 99,998,019 118.48 22.43 5.3 

b18 19,125,000 37.30 11.49 3.3 

Speedup is closed related to the stimuli density! 
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Irregular distribution of events 

 Irregularity 

 some pins are very hot, some are very cold 

 Testcase 

 50,000 simulation cycles with random stimuli 

Peak number of 

messages 
DES3 R2000 M1 JPEG NOC 

0-9 68170 15747 24788 178728 157891 

10-99 63895 11567 16506 117820 23297 

100-999 3960 53 663 2913 590 

1000-9999 2253 2 3 202 0 

10000-50000 85 0 4 0 15 
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Conclusion 

 Parallel Logic Simulator on GPUs 

 Developed a GPU-friendly CMB algorithm 

 Designed efficient dynamic memory management 

 Utilized GPU/CPU co-processing to hide overhead 

 Achieved high performance 

 Future works 

 Study the scalability on industry-strength circuits 

 Apply the techniques to system and RTL simulations 
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THANK YOU! 


