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CSC 259/459 Lecture Notes

Colorimetry is about quantitatively studying color, a subjective experience. Not until we
can put our experience to numbers can we rigorously study colors. In the color vision chapter,
we have seen two ways to geometrically interpret a color as a point in a three-dimensional space:
the cone space and the CIE 1931 RGB space. We will study a few other ways to quantitatively
analyze colors in this chapter.

1 CIE 1931 XYZ Space

There are two slight inconveniences with the CIE 1931 RGB color space. First, it depends on
the exact primary colors (and reference white) you choose. Second, there are also inevitable
going to be colors that can be “produced” only by using negative amount of the primaries, no
matter what primaries you choose. While mathematically and physically rigorous, it is not quite
intuitive. So CIE in 1931 wanted to standardize a color space that 1) can be used as a “common
language” (without having to laboriously specify what the primaries are used every time you
say “the RGB color space”) and that 2) all human visible colors are produced by mixing non-
negative amount of the primaries. That color space is called the CIE 1931 XYZ color space,
sometimes referred to simply as the XYZ color space.

You might be wondering: isn’t the LMS cone space already a color space that satisfies the
two conditions above, and if so why do we have to invent a new XYZ space? The cone space
is tied intrinsically to the HVS, so it does not vary (significantly) in population. It is also a
color space where all the colors are expressed using positive amounts of the primaries (cone
responses). These are all true, but remember the cone fundamentals were not reliably available
back in 1931 (Chap. 2.2 of the Color Vision chapter).

Trgb2xyz

CIE 1931 RGB space CIE 1931 XYZ spaceCIE 1931 RGB CMFs CIE 1931 XYZ CMFs

Figure 1: The CIE 1931 XYZ color space (right) is constructed to be a linear transformation
from the CIE 1931 RGB color space (left). Notice how a color, say, 600 nm spectral light is
represented differently in the two color spaces. This figure visualizes how the spectral locus and
the CMFs are transformed. The exact coefficients of the transformation matrix Trgb2xyz are
omitted here but are widely available online. The CIE 1931 RGB CMFs figure is adapted from
Marco Polo [2007], and the XYZ CMFs figure is adapted from User:Acdx [2009].

Fairman et al. [1997], Brill [1998], and Service [2016, Sec. 4] describe the process and the
(sometimes rather arbitrary) design decisions that went into turning the CIE 1931 RGB space
into the 1931 XYZ space. Zhu [2022d] is an interactive tutorial that walks through the math.
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The bottom line is that the transformation from the CIE RGB to the XYZ space is con-
structed to be a linear transformation. Figure 1 shows how the spectral locus is transformed
from the RGB to the XYZ space, governed by the matrix Trgb2xyz. We can see that in the RGB
space the spectral locus enters negative octants but it stays entirely within the all-positive, first
octant in the XYZ space. The transformation also gives a new set of CMFs in the XYZ space.
The Y CMF is intentionally designed to match the CIE 1924 Luminous Efficiency Function
(LEF), so that by looking at the Y value of a color we can tell what its luminance is (refer to
Chap. 3.2 of the Color Vision chapter to LEF and its various caveats).

2 Chromaticity Diagram and Its Interpretation

How do a color that is mixed from 1:2:4 units of RGB primaries and a color that is mixed
from a 2:4:8 units of the primaries relate? The amount of a primary is directly proportional to
the power of that primary, so the second color can be obtained by doubling the power of each
primary in the first color. Similarly, halving the power of each primary in the second color gets
us the first color. Intuitively, lights that have the same primary quantity ratio have the same
“objective color quality” while differing in the intensity.

2.1 Chromaticity is the Result of a Perspective Projection

More formally, we can calculate the primary ratio r : g : b of a color and then normalize the
ratio such that r + g + b = 1 (100%). The so-calculated r, g, b values of a color are called the
(RGB) chromaticity values of that color. Mathematically, the chromaticity of a color defined
in a RGB space is calculated from its absolute quantity by:

r =
R

R+G+B
(1a)

g =
G

R+G+B
(1b)

b =
B

R+G+B
(1c)

Geometrically, going from the RGB values of a color to the rgb chromaticity is equivalent to
a perspective projection, where we project a [R, G, B] point through the origin to the r+g+b = 1
plane. The left panel in Figure 2 visualizes this projection. Each line that go through the origin
is an “equi-chromaticity” line, in that all the colors on that line have the same chromaticity.
The spectral locus is so projected to the r + g + b = 1 plane. Since there are only two degrees
of freedom in chromaticity, we can visualize the chromaticity in a two-dimensional space, and
usually the r and g coordinates are used. The right panel in Figure 2 shows the spectral locus
in the rg-chromaticity diagram.
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2.2 xy-Chromaticity Diagram and Its Interpretation CSC 259/459 Lecture Notes

Spectral locus 
projected to r+g+b=1

r+g+b=1 plane

Equi-
chriomaticity line

Judd’s article, in the context of his reference to Newton’s
work:11

We find here a statement of Newton’s ‘‘law of color
mixture.’’ Although this law makes no explicit men-
tion of additive distribution curves, and does not di-
rectly state that contributions from different sources
to a given primary color process are to be combined
by addition, still these concepts are contained implic-
itly in the law. Our indebtedness to Newton in this
respect was acknowledged by J. C. Maxwell (Sci.
Papers, Cambridge, p. 149; 1890), who was among
the first to state explicitly and use these concepts.
Probably Grassman [sic] (Pogg. Ann. 89, pp. 69–
84; 1853) first stated them explicitly.

Luminance Coefficients

Judd10 had formalized the proposal, originally made
by Schrödinger, that one of the color-matching functions
could, by careful selection of the location of the other

FIG. 2. The CIE 1931 r , g chromaticity diagram. Thetwo primaries, be made to have a luminance coefficient
Wright-Guild amalgamated data are expressed on r- and g-of unity with the other two primaries having luminance axes with the primaries R , G, and B located at the apices of

coefficients of zero. This would in theory make the color- a right triangle (RGB ) . The triangle is located in the unit-
matching function associated with that primary an exact positive first quadrant, but some of the spectrum locus ex-

tends outside the triangle bounded by the primaries, be-copy of the 1924 V (l) curve. Thus, what was currently
cause some color-matching data are negative.being done as an ancillary calculation of the luminance

of the light under consideration would be built into the
colorimetric calculations, again diminishing the burden
of calculation. This could be accomplished, Judd realized,
by placing the other two primaries on the so-called as did most officials in the U.S. Priest reported so to

Guild by letter in July, 1 just two months before theyalychne, meaning the lightless line, whose points have
zero luminance. were to meet. This ran counter to a British interest

that the standard observer be described by Guild’sThere was an overwhelming consideration apart from
the convenience of calculation. If what was at that time selected primaries and by the mean Wright–Guild ex-

perimental data. The eventual solution must, there-considered the standard brightness function were not in-
corporated into the standard color functions, then two fore, have been a great compromise: the Wright–Guild

data as represented by the Guild primaries would de-colors might match in all respects [that is, be a complete
color match in, say, dominant wavelength, luminance, fine the standard observer in accord with Resolution

(1 ) , and the system would be transformed to all posi-and purity (to use the concepts of the day] but differ in
standard brightness. Such an apparent contradiction could tive color-matching functions in accord with Resolu-

tion ( 5 ) . Both parties would realize their objectives.not be tolerated in 1931; only in later years was a fuller
understanding reached regarding the distinction between It had been known for a long time that the conditions

of transformation that would lead to a system of all-luminance and brightness.
positive values was one in which the lines joining the
new primaries in the chromaticity diagram of the oldAll Positive Values of the Spectral Tristimulus Values system passed completely outside the spectrum locus
and purple boundary.13 Looking at Fig. 2, one can seeIt may have been harder to agree on the formulating

principle that all coordinates of real stimuli have posi- those portions of the spectrum locus that pass outside
the lines joining the primaries R , G , and B . Thosetive values. By real stimuli are meant any stimuli the

coordinates of which lie within the convex region of spectral tristimulus values have at least one negative
value, and, indeed, it may be seen from Fig. 2 whythe chromaticity diagram bounded by the spectrum

locus and the line connecting its extremities. It was, no system of real primaries can fail to have some
negative values.after all, those stimuli for which one would be cross-

multiplying and summing seemingly endless columns So the formulating principles that all values should
be positive and minimum space should be wastedof numbers. Any simplification would decrease human

error. Priest felt particularly strongly about this item, could be met by causing the sides of the triangle join-

14 COLOR research and application
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Replot the locus in the 
rg-chromaticity diagram

Figure 2: Visualization of the CIE 1931 RGB space and its rg-chromaticity diagram. Left: the
transformation from a [R, G, B] color to its [r, g, b] chromaticity is a perspective projection to
the r + g + b = 1 plane. Each line that go through the origin is an “equi-chromaticity” line, in
that all the colors on that line have the same chromaticity. We use the CIE 1931 RGB color
space for illustration here, but the same idea applies to other color spaces as well, e.g., the
CIE 1931 XYZ space. From the interactive tutorial in Zhu [2022a]. Right: visualization of the
spectral locus in CIE 1931 RGB space; from Fairman et al. [1997, Fig. 2].

2.2 xy-Chromaticity Diagram and Its Interpretation

Of course we can do the same if a color is defined in the XYZ space or the LMS cone space, and
we omit the trivial math here. The left panel in Figure 3 shows the xy-chromaticity digram. It
is obtained by first converting from the XYZ space to the xyz space and then plot only the x
and y axes (z is implicit in that x+ y + z = 1). The horseshoe curve is the spectral locus. For
the reference, we also show the three primary lights and the white point of the CIE 1931 RGB
color space as well as the Planckian locus, which shows the chromaticities of the black-body
radiation at different temperatures (Figure ??).

We can make a few general observations. First, the triangle in the diagram represents
the chromaticity values of all the colors that can be produced by mixing different amounts of
the three colors whose chromaticities are the vertices of the triangle. That is, given three colors
[R1, G1, B1], [R2, G2, B2], [R3, G3, B3] and their chromaticity coordinates c1 = [ R1

R1+G1+B1
], c2 =

[ R2
R2+G2+B2

], and c3 = [ R3
R3+G3+B3

], we can show if we mix these colors to form a color C,
[αR1 + βR2 + γR3, αG1 + βG2 + γG3, αB1 + βB2 + γB3] (α, β, γ are the contributions of the
primary colors), C’s chromaticity is necessarily inside the triangle 4c1c2c3. So the triangle
4RGB represents the chromaticities that can be physically produced by the CIE 1931 RGB
primary lights. We call that the chromaticity gamut of the color space, or sometimes simply
the gamut of the color space, but we should keep in mind that the actual gamut of a color space
is always a three-dimensional concept.
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2.2 xy-Chromaticity Diagram and Its Interpretation CSC 259/459 Lecture Notes

CIE 1931 
RGB gamut

EEW (CIE 1931 
RGB white point)

Plantain locus

An imaginary color

The interior of the (convex) 
spectral locus represents 

the gamut of the HVS

spectral locus

G

B

R

Figure 3: Left: The gamut and spectral locus of the CIE 1931 RGB space visualized in the
xy-chromaticity diagram; adapted from User:PAR [2012]. The Planckian locus is shown for
the reference too. A point outside the (convex) spectral locus is an imaginary color. Right:
comparison of different color spaces in the xy-chromaticity diagram; from Myndex [2022]. A
color space’s chromaticity gamut is a triangle; a color outside the triangle cannot be physically
produced in that color space.

Second, we can extend from mixing three colors to mixing arbitrary number of colors and
show that the interior of the spectral locus represents the chromaticities of all the colors that
humans can see, i.e., the gamut of the HVS. This is true because the shape of the spectral locus
is convex, so connecting any two points (i.e., mixing two colors) on or inside the locus will never
go beyond the locus. By extension, a positive linear combination of any points on or inside
the locus will always stay inside the locus. A natural implication is that any point outside the
spectral locus represents an imaginary color, since that point can never be constructed by a
positive linear combination of points on or inside the spectral locus.

Third, the right panel in Figure 3 shows the gamut of a few common color spaces. The sRGB
color space is the most commonly used color space; virtually every single display supports it and
an image, by default, is encoded in the sRGB format. We will have more to say about displays
and image encoding later. Observe how small the sRGB gamut is: it covers about 35% of the
HVS gamut. P3 is a more wider gamut that is supported in many new displays. Rec.2020 is
an even wider gamut that is yet to be widely supported; it is 72% larger than the sRGB gamut
and 37% larger than the P3 gamut. ProPhotoRGB contains colors that are beyond the HVS
gamut, so to produce all the real colors in the ProPhotoRGB space we will need more than three
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2.3 HVS Gamut CSC 259/459 Lecture Notes

Figure 4: HVS gamut visualized in the XYZ space and in the xy-chromaticity diagram. We
systematically sample the chromaticities in the chromaticity diagram using square pulses as the
light SPDs (insets on the right). From the interactive tutorial in Zhu [2022c].

primary lights. It is mostly used in Adobe Lightroom and Adobe Camera RAW software. They
both deal with RAW images before they are encoded in a format that is displayable. We will
talk about RAW imaging and processing later in the class.

Finally, no display can produce all the colors that humans can see. No matter where you
choose to place the primary colors in the chromaticity diagram and how many primaries you
choose, the resulting gamut will never completely cover the entire HVS gamut as long as the
primary colors are real colors (i.e., on or inside the spectral locus) and you have finite number
of them. This is again because the spectral locus is convex. For this reason, do not trust the
colors in any xy-chromaticity diagram: the undisplayable colors are approximated by in-gamut,
displayable colors. This is called gamut mapping, which we will discuss in Chapter ??.

2.3 HVS Gamut

We can systematically sample the chromaticities in the chromaticity diagram to visualize how
the HVS gamut looks like. Figure 4 visualizes the HVS gamut in both the XYZ space and
the xy-chromaticity diagram. Comparing the two, you can see how a selected set of colors in
highlighted the XYZ space map to a curve in the xy-chromaticity diagram.

There are of course many ways you can sample the chromaticities to get a good coverage of
the HVS gamut, and Zhu [2022c] is an interactive tutorial that talks about this in detail (you
can also see how the HVS gamut looks like in different color spaces). A common way seems
to be to generate SPDs that are square pulses with equal peaks (see the insets on the right),
which will guarantee that you do not repeatedly sample the same chromaticity point. This is
what the popular Python package Colour [NumFOCUS] does, but nothing prevents you from
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CIE 1931 XYZ SpaceCIE 1931 xy-chromaticity Space A RGB Space

Figure 5: Pick the primary colors (which usually are termed R, G, and B, because they usually
are red-ish, green-ish, and blue-ish) and the white point in the xy-chromaticity space (left panel)
and then construct a color cube from them (right panel). Note how the spectral locus is now
positioned in the constructed RGB space. From the interactive tutorial in Zhu [2022b], which
we invite you to study; you can see that as you change the primary colors and/or the white
point, the resulting color gamut and the color cube will change accordingly.

using a different method, as explored in Zhu [2022c]. Of course, the actual HVS gamut has no
boundary: we can indefinitely grow the gamut by simply scaling up the light power.

3 Color Cube

The various color spaces we have been discussing are great, but they do not seem to be the sort
of color spaces we use in everyday software when specifying colors. By far the most common
way in practical applications to specify colors is by using a color cube, where you can specify
the primary values (usually R, G, and B) of a color, each an integer between 0 and 255. What
exactly are the colors that can be represented by such a color cube? How is it related to the
color gamut we have discussed, and how do we construct a color cube? These are questions
explored in the interactive tutorial [Zhu, 2022c], which you are invited to go through. Figure 5
illustrates the idea, and we will give a brief summary of the main steps.

3.1 Step 1: A Linear Transformation From the XYZ Space

• We know that a color space is defined by its three primary colors and the white point,
which you get to choose when building your own color cube. The left panel shows one
such choice, which happens to be what is used by the sRGB color space.

• Knowing these four points uniquely defines the shape of a parallelepiped in the XYZ space
(middle panel). The space inside the parallelepiped corresponds to actual colors that can
be produced by using the primary colors.

Note that at this point we know only the relative shape, but not the absolute scale, of
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3.2 Step 2: Color Quantization and Gamma CSC 259/459 Lecture Notes

the parallelepiped: we can uniformly scale the power of the primary colors and white
point, which will not change their chromaticity values but will expand or shrink the paral-
lelepiped. The convention is to set the Y value of white to be 1 and normalize everything
else accordingly, but of course the actual luminance of white (and any other color) depends
on the actual device used.

• Now we turn the parallelepiped to a cube that is positioned between [0, 1] in all three
directions (right panel). The white point in the XYZ space will be [1, 1, 1] in the color
cube, signifying that white is produced from equal units of the three primary colors. This
amounts to a linear transformation from the XYZ space.

Note also how the spectral locus is now positioned in the RGB space: part of the locus
(and by extension the HVS gamut) is now outside the RGB cube, showing that there
exists real colors (i.e., inside the HVS gamut) are cannot be produced by the choice of
the primary colors. This is consistent with our gamut interpretation in the chromaticity
diagram (Figure 3).

What we have done so far is to construct a linear transformation matrix, Txyz2rgb, which
transforms the parallelepiped (middle panel in Figure 5) to a cube (right panel in Figure 5).
This transformation matrix will change if we change any primary color or the white point of our
color space (the interactive tutorial in Zhu [2022b] will allow you to do exactly that). Either
way, the color cube we have built so far is luminance-linear: if we double the power of a light
whose color is [R, G, B], we will get a color [2R, 2G, 2B]. This is because the XYZ space is
luminance-linear, and the RGB cube we have so far is a linear transformation from the XYZ
space.

3.2 Step 2: Color Quantization and Gamma

We get a cube now, but we are not done yet. The cube is a continuous solid between [0, 0, 0] and
[1, 1, 1], but the digital representation of a color is discrete and finite, so we have to quantize
the solid. Assuming we have, say, 8 bits (i.e., 256 discrete levels) to represent the contribution
of each primary color, the question is how to allocate the 256 levels to the [0, 1] range.

So far the contribution of a primary color is linearly correlated with the power of the primary:
doubling the contribution of a primary requires doubling the power of the corresponding light.
Therefore, a uniform allocation of the bits would mean uniformly quantizing the light power
range. As we have seen in the photoreceptor chapter, the electrical response of a photoreceptor
is not linearly proportional to the light power (even though the amount of photon absorption
and pigment excitation are!); the response incrementally saturates as the light power increases.
As a result, the perceptual brightness level also gradually saturates with the light power. There-
fore, uniforming quantizing the power range would lead to a non-uniform quantization of the
brightness range, which is what we ideally want in order to best use the limited bit budget.

To uniformly quantize the brightness levels, a common method is to first model the brightness
level (B) as a power-law function of the raw channel value (v ∈ [0, 1]) by B = v1/2.2 and then
quantize B uniformly. The constant factor 2.2 is called the gamma of the system. For instance,
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3.3 RGB Color Spaces are Linearly Related in Luminance-Linear Space CSC 259/459 Lecture Notes

a red-channel value of 0.5 would translate to b0.51/2.2 × 255c = 186 in an 8-bit encoding.
The relationship between B and v is called the Opto-Electronic Transfer Function (OETF).
OETF is usually performed by an imaging system such as a camera, which turns optical signals
(luminance) to electrical signals (bits in a color space).

Note that the gamma-based OETF does not model the actual relationship between perceived
brightness and light luminance, but it is a close engineering hack. The behavioral brightness
perception is largely accounted for by the photoreceptor/RGC response to light intensity. As
we discussed in the Photoreceptor chapter, the relationship between the electrical response of a
photoreceptor and the light intensity is usually modeled by a (generalized) Michaelis equation,
which incrementally saturates and exhibits a diminish return, just like a power-law function
using a gamma.

The sRGB color space [Anderson et al., 1996] slightly modifies this OETF to avoid numerical
issues when v is small. The sRGB standard uses a linear scaling when v is very small1 and adjust
the gamma to be 2.4 so that the overall quantization function approximates a uniform power-law
function with a gamma of 2.2.

There are two caveats here. First, v is proportional to luminance L, but is not exactly L, so
the same v will result in different Ls on different displays that differ in their peak luminance. So
encoding B as a power-law function of v does not mean the OETF actually models the correct
relationship between B and L. That is why the sRGB standard specifies the peak luminance of
the display (white point) as 80 cd/m2. Presumably this means that at this particular luminance
range (0 to 80 cd/m2), the relationship between B and L roughly follows the power law. Second,
light adaptation (a later topic) will also play a role, since the HVS responds to contrasts over
the mean illuminance, rather than absolute illuminance, and the mean illuminance vary largely
across viewing environments. The sRGB standard also specifies that the mean illuminance level
of the viewing environment to be 64 lux. When actually viewing an sRGB image, both condition
are rarely met, so take all these with a huge grain of salt.

3.3 RGB Color Spaces are Linearly Related in Luminance-Linear Space

By “RGB color space”, we mean a color space that is defined by its three primary colors (and
critically also the white point), which we call R, G, and B for simplicity but they certainly do
not have to look like red-ish, green-ish, and blue-ish. Different RGB color spaces might use
different gammas and quantization schemes. In the end, the discrete RGB values are usually
not linearly related to luminance. We can go back to a luminance-linear space from the discrete
RGB values by inverting the gamma encoding process described above. For instance, in sRGB
space 186 would translate to 0.5 in the luminance-linear sRGB space.

Once in a luminance-linear space, different color spaces are simply a linear transformation
away from each other. The transformation matrix can be calculated based on the primary colors
and the white point of the two color spaces. We will omit the math here, but to get an idea
just go back to Figure 5. Two color spaces having different primary colors and white points will

1This makes sense given our understanding in the photoreceptor chapter that the receptor’s electrical response
is approximately linear against the light luminance when the luminance is very low.
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[0, 1]

[0, 1][0°, 360°]

Saturation

Hue

Figure 6: We can represent an RGB color cube (left) using cylindrical coordinates. One
such representation is the HSL color space (right), where hue, saturation, and lightness have
intuitive interpretations. Hue and saturation also have intuitive interpretations in the CIE 1931
xy-chromaticity diagram, which normalizes luminance so lightness information is absent. Left:
from SharkD [2010b]. Middle: adapted from SharkD [2010a]. Right: from BenRG [2009].

end up being two different parallelepipeds that are related by a transformation matrix. Another
way to think about this is that each luminance-linear RGB color space is a linear transformation
away from the XYZ space, so these RGB spaces must be linearly related too.

4 HSB/HSL/HSV Space

A color cube is one way to represent a (RGB) color space. Another common way to represent an
RGB color space is to use a cylindrical-coordinate representation. There are two such represen-
tations, HSL (Hue, Saturation, and Lightness) and HSV (Hue, Saturation, and Value), which is
also called HSB (B for Brightness). These are not new color spaces; they have the exactly same
gamut as the corresponding RGB color space. They are just different ways to organize colors in
a color space; instead of using three-dimensional coordinates to represent a color as in a color
cube, they use cylindrical coordinates.

Figure 6 compares a typical color cube (left) and its HSL representation (right). We omit
the transformation math here, but one can imagine how we turn the white point in a color
cube to the top plane, the black point to the bottom plane, and expand everything else so that
a cube surface morphs into a cylindrical surface. The three dimensions in an HLS space are:
hue, saturation, and lightness. Very informally, hue represents subjectively different colors (red,
orange, yellow, etc.), saturation represents how much white a color has (a color with a higher
saturation means it is more “pure”), and lightness represents the brightness. In this sense, hue
and saturation also find their interpretations in the CIE 1931 xy-chromaticity diagram (right),
where a color closer to the spectral locus has a higher saturation (and colors closer to white-ish
colors are desaturated) and the spectral locus cycles through different hues. Lightness is not
concerned with in the chromaticity diagram, which normalizes the color intensity.

You can imagine what the benefit of using an HSL/HSB color space is. It is more intuitive to
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pick colors in these color representations since the three dimensions have intuitive interpretations
that better align with how we describe colors in our everyday language. So we can more easily
reason about how a color will change if we vary a dimension. In contrast, it is sometimes hard to
predict how a color will change when we, say, increase the red channel by 10. I almost exclusively
use the HSL/HSB space when picking colors in graphing software.

5 Display Native Gamut

The display has a native color space. Each display pixel is implemented by (usually) three sub-
pixels, each of which has an implementation-specific SPD and acts as a primary light. The retina
then spatially integrates the lights from the three sub-pixels, i.e., mixing the three primary colors.
We can individually control the luminance of each sub-pixel and, by extension, the actual color
of the mixed pixel. The luminance can be controlled by 1) the duty cycle of a pixel through
Pulse Width Modulation (PWM), 2) the current supply to each sub-pixel, or 3) the voltage
supply to each sub-pixel. The luminance is strictly linear with respect to the drive signal in the
first case, approximately linear in the second case, and non-linear in the third case [Miller, 2019,
p. 112]. The mapping from the electrical drive signal strength to the luminance level is usually
called the Electro-Optical Transfer Function (EOTF).

The display’s native color space is mostly like not exactly sRGB or any standard color
space. The primary colors (and the white point) depend on the emission spectrum of each
sub-pixel, which in turn depends on the material used. For instance, inorganic LEDs have a
narrower emission spectra that the organic LEDs [Huang et al., 2020], so they tend to be able
to generate more saturated colors and, thus, the resulting display gamut is wider. One has to
balance multiple trade-offs in a display design, such as invariance of chromaticity vs. luminance,
lifetime, power consumption, and cost, so it is difficult to tune the pixel spectra just so that the
colors precisely match that of a standard.

Field Sequential Displays (FSD) rely on the temporal integration of our visual system to
create different colors. The most common example of a FSD is modern Digital Light Processing
(DLP) projectors. We will discuss display implementation technologies later in the class. For
now, we will focus on the color space of a display regardless of how the colors are produced.

As an example, Figure 7 shows the the sub-pixels images of the green primary colors in
the P3 and sRGB color space as displayed on a 4th-generation iPad Pro. We can make a few
observations. First, the emission patterns of P3 green and sRGB green are different. The P3
green is more “pure”, where the red and blue sub-pixels are contributing very little, whereas
the sRGB green requires noticeable contribution from the red sub-pixels. This is not surprising
because the P3 green is much more saturated (closer to spectral colors) as the sRGB green,
as shown in the right figure in Figure 3. The actual contributions of red sub-pixels in sRGB
green as seen by my eye are not as strong as seen in this iPhone-taken image; the image signal
processing pipeline in the iPhone definitely has introduced its artifacts.

Second, even for the P3 green, there are still some contributions from the red sub-pixels.
This suggests that the native display gamut is different from (and larger than) P3. This makes
sense: for a display to support a particular color space, say, the P3 space, the display’s native
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P3 Green sRGB Green

Figure 7: Microscope-magnified subpixel images of P3 green and sRGB green primary (both are
[0, 255, 0] in their respective color spaces) on a 4th-generation iPad Pro taken from an iPhone
12 Pro (whose image signal processing chain introduces color inaccuracies; the red sub-pixel
contributions to the sRGB green are not as strong when seen by naked eye). As a side note,
you can also see that when the image is focused on the green sub-pixels, the red (and blue)
sub-pixels are out of focus, a result of chromatic aberration.

color space must be no smaller than the P3 space.

6 Color Management

An end-to-end workflow might involve multiple color spaces, and it is important to correctly
translate colors between color spaces to retain color accuracy. For instance, you might edit a
photo encoded in the P3 color space, save the photo in a file and share it your friend who will
view the image on a display that supports only the sRGB color space.

Multiple color spaces are involved here. The image is first encoded in P3 space, and then
will have to re-interpreted in the sRGB space. A color, say, [10, 20, 30] encoded in the P3 color
space is not the same color as the sRGB color [10, 20, 30], so we must correctly translate a
color encoded in the source color space to the destination color space. A critical issue in this
transformation is that the P3 color space has a larger gamut than that of sRGB, so there will
necessarily be colors in the photon that will never be accurately reproduced on your friend’s
display — what do we do with these colors? Each display also has its own native color space,
and an sRGB/P3 image will have to be transformed to the display native space for display.
Fundamentally, if we want to display a, say, P3-encoded image, the display’s native gamut must
be no smaller than P3.

Taking care of all these is part of color management, whose goal is to maintain a consistent
color appearance throughout the workflow that might involve wildly different devices. It requires
a collaboration between every single piece that touches color in the workflow: the image file
must specify what color space its pixel colors are encoded in (called a profile), the software
that manipulates image content must correctly read and interpret the profile and perform the
necessary transformation, potentially through APIs exposed by the Operating System (OS), and
the display firmware and drive must communicate with the OS what sort of color spaces they
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support. Giorgianni and Madden [2009] and Sharma [2018] are two excellent references for color
management. We will describe the key issues here.

6.1 Converting Pixel Colors to Drive Signals

When opening and viewing an image encoded in, say, sRGB on a display, a few transformations
have to happen [Miller, 2019, Chap. 7.1]. The display’s native color space is mostly like not
exactly sRGB or any standard color space, we must correctly translate a color encoded in the
sRGB space to the display’s space. A color [10, 20, 30] encoded in sRGB is not the same color
as [10, 20, 30] in the display’s color space. This transformation is done in two steps.

First, the image file ideally has metadata that tells us what color space its pixel colors
are encoded in or, better, the transformation matrix from the image’s color space to a device-
independent color space, say the CIE XYZ space. The way to describe such information has been
standardized by International Color Consortium (ICC) in what is called the ICC profile [Inter-
national Color Consortium, 2019]. We can embed an ICC profile in common image file formats
such as JPEG. Second, the display itself also has to report its native color space. To do that,
modern displays usually come with an ICC profile that describes how to transform from the CIE
XYZ space to the display native space. Now when the Operating System gets the image file, it
would first transform the sRGB colors to the XYZ space using the ICC profile in the image and
then transform the colors in the XYZ to the display native space using the display profile2. You
can see that the XYZ space here serves to connect the input color space and the output color
space. ICC calls such a space a Profile Connection Space (PCS).

The transformation from the XYZ space to the display native space is necessarily linear. To
calculate the transformation matrix, we will first measure the chromaticity values of the display
native primary colors and the white point offline [Balasubramanian, 2003]. Then we take the
exact the same steps as described in Chapter 3.1: we are essentially creating a color cube for the
display ([1, 1, 1] represents the display white point, i.e., when all the sub-pixels emit maximum
luminance, etc.).

After this transformation, we have obtained a set of luminance-linear, analog (between [0,
1]) color values in the display’s native color space. The next step is to turn the real-valued
colors to discrete values (drive signals) that can be sent to the display to control the luminance
of each sub-pixel. Ideally, we want 255 (assuming 8 bits) to produce maximum luminance and 0
to produce minimum luminance. Depending on how the display adjust its luminance (by PWM,
current, or voltage), the drive signal vs. luminance relationship, i.e., EOTF, may or may not be
linear. Either way, we can offline calibrate an EOTF look-up table (or regress a function), from
which we can then map a desired luminance level to a discrete value.

What is the desired luminance level for a pixel? It would be amazing if your display can
reproduce the scene luminance, but that is unlikely, because the real world has a much higher,
orders of magnitude higher, dynamic range (DR) than that of a display. A main challenge in
imaging and display, thus, is tone mapping, which is concerned with mapping a high-dynamic-

2While in the XYZ space we usually perform an additional transformation so that sRGB white becomes the
white point in the display space. This is called chromatic adaptation, which we will discuss later in the class.
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range scene to a low-dynamic-range display. This mapping can be described by a Opto-Optical
Transfer Function (OOTF). Both the OETF of an imaging system and the EOTF of a display
participate in the OOTF, and if the product of OETF and EOTF is not the desired OOTF,
one would need to implement an Electro-Electrical Transfer Function (EETF) as part of the
image processing pipeline to reach the desired OOTF. Tone mapping is the focus of extensive
research [Reinhard, 2010; Mantiuk et al., 2015].

6.2 Gamut Mapping

When viewing a P3-encoded image on a display whose gamut is smaller, e.g., similar to that
of sRGB, the colors might not be accurately reproduced. The best thing we can do is to
approximate an out-of-gamut color with a in-gamut color to minimize the color error. This is
called gamut mapping. Morovič [2008] and Glassner [1995, Chap. 3.6] describe the basic
algorithms with the former being more recent and comprehensive.

The simplest strategy would be to simply clamp out-of-range values, so a color of [12, 200,
300] would become [12, 200, 255]. Clearly, other than being extremely simply to implement
this strategy would introduce large color reproduction errors. ICC has defined four rendering
intents, each of which corresponds to a gamut mapping algorithm (vaguely worded and the
implementation detail might vary). For instance, the Absolute rendering intent leaves all the in-
gamut colors unchanged but maps the out-of-gamut colors to the boundary of the color gamut.
The Perceptual rendering intent can be implemented by uniformly projecting all the colors to
the white point so that all the colors are in-gamut. You can imagine that while this maintains
the relative color appearance between colors (which the Absolute rendering intent fails at), but
it would also change in-gamut colors that could have been accurately rendered!

7 Color Differences and “Perceptually Uniform” Color Spaces

In many practical applications we need to calculate color differences. For instance, an image
synthesis algorithm might want to be minimize the color difference in the synthesized image
and some form of “ground truth”; a display’s color reproduction might not be 100% accurate
so we want to quantitatively compare the quality of different displays by measuring the color
difference (compared to the colors to be reproduced) each introduces. Fortunately, once we put
colors into a three-dimensional coordinate system, calculating color differences becomes natural:
the distance between two colors gives a measure of the difference between the two colors.

However, for the Euclidean distance to be a good measure, we must be sure that the distance
is proportional to the perceptual color difference. How do we quantify the perceptual color
difference? Practically there are not many cases we need to quantify large color differences.
What is more important is to quantify small color differences. So a typical approach is to
estimate the Just Noticeable Difference (JND) threshold of a color. For a given reference
color, we can use a threshold-detection psychophysical paradigm to estimate the set of colors
that are just noticeably different from the reference color. These experiments are called color
discrimination tests.
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(a) model prediction at 10� & 25� in DKL space (b) model prediction at 25� in linear sRGB space (c) vector field for power optimization

Fig. 4. Color perception model and power-aware chromaticity optimization. (a) illustrates our color discrimination model’s ellipse thresholds at nine coordinates.
They are evaluated on an equi-luminant plane in the DKL color space, with eccentricities 10� (light gray curve) and 25� (dark black curve). All colors within an
ellipse are perceptually indistinguishable from the center (black-cross) color. Similarly, these ellipse thresholds can also be sampled in linear sRGB space.
(b) shows ellipses of samples across a 3 ⇥ 3 grid sampled within the sRGB cube. Each ellipse in this illustration is shaded with the color at its center. Since
equi-luminant planes are parallel in linear sRGB, all the ellipses appear on parallel planes. (c) visualizes the model-guided chromaticity shi�ing (at 25�
eccentricity) to minimize display power consumption. We use our perceptual constraints in combination with our power cost function to shi� the chromaticities
of various sample colors inside the sRGB color cube (illustrated in Figure 5). The original, and power-optimized colors correspond to the tail and head of the
vectors, respectively.

Modeling ellipse level sets. In our model, we represent the set of
all equi-lumiant colors which cannot be discriminated from a test
color, t 2 i-DKL, relative an adaptation color, b 2 i-DKL, using
an ellipse-shaped region centered around the color contrast of the
test color. The boundary of this ellipse region corresponds to the
discriminative threshold of ^ (C8 , 18 ), for 8 2 {!�", (�(!+")}. The
set of color coordinates which represent this threshold, x 2 i-DKL,
ful�ll the system of equations:(

G!+" = 1!+"
E(x; t, b," ) = 0.

(3)

The �rst constraint ensures that all the color coordinates on the
threshold are equi-luminant to the adaptation color. The second
constraint ensures that all x are on the edge of the ellipse region with
major and minor semi-axes equal to " = (U!�" , U(�(!+") ) 2 R2.
Formally, the function E(·) is de�ned as

E(x; t, b," ) =
’

8={!�",(�(!+") }

✓
^ (G8 ;18 ) � ^ (C8 ;18 )

U8

◆2
� 1, (4)

Model Regression. Equation (4) requires the knowledge of the
ellipse-size parameters, U8 . Prior work has shown that U8 relates
to the color-contrasts of various test colors, ^ (C8 , 18 ), as well as the
retinal eccentricity, 4 2 R+, at which a colored stimulus is displayed
[Hansen et al. 2009; Krauskopf and Karl 1992]. We leverage our user
study data from Section 3 to learn the relationship

� : (+ , 4) 7! " (5)

where + 2 R2 are the ! �" and ( � (! +") coordinates of the test
color in DKL space computed using Eqs. (1) and (2). Speci�cally, we

use our data to optimize a shallow neural network, which estimates
the discrimination thresholds, using least-squares regression:

"̂ = arg min
�
k�(+ , 4) � " k22 . (6)

The '2 value of the regression is 0.58 (adjusted '2 value of 0.51),
indicated an acceptable regression accuracy. Note that our raw data
from Section 3 is intentionally pre-processed as described in detail
in Section 6.1. Brie�y, we aim to cover more conservative thresholds
that are generalizable to broad users instead of an “average �t”.

Neural Network Architecture. We chose the Radial Basis Function
Neural Network (RBFNN) with a sigmoid output layer to ensure
local smoothness, as well as a positive, localized output range. Math-
ematically, the network is summarized as

�(+ , 4) = ( � ( ©≠́ #’
9=1

, 9d

✓����

+

4

�
� c9

����
2
, f 9

◆
+ . 9 ™Æ̈ , (7)

where � is the term-wise multiplication operator. The RBFNN takes
the input, and computes the weights of the e�ect each of the #
nodes of the latent representation have on the input. It does so by
applying a Gaussian Radial Basis function, d , centered at c9 with
std of f 9 , for each node, 9 . The weights of each node is scaled by a
scaling constant , 9 , incremented by the linear bias . 9 , summed up,
and passed to the sigmoid function ( and mutliplied by a scaling
factor ( to produce the �nal prediction. The trainable parameters
of this network are the centres, c9 , sizes, f 9 of the radial bases,
as well as the �nal scaling factors , 9 , and linear biases . 9 . ( is a
normalization constant and chosen to be the maximum possible
value of contrasts within the capability of the display used in our
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crispening,† limiting the scenarios under which the formula is applicable.170

In imaging applications, colors are typically surrounded by other similar
colors, whereas visual datasets used for deriving the color difference formu-
lae are based on comparisons of colors on a fixed background — normally
mid-gray. For imaging applications, therefore, it is particularly important that
the local lightness/chroma crispening in the experimental visual data should
not influence the color difference formulae. In addition to the above concerns
with color difference formulae, there are several fundamental questions asso-
ciated with the CIELAB space itself.169 Research on improved uniform color
spaces and color difference formulae is therefore likely to continue. 

1.8 Limitations of CIE colorimetry
CIE colorimetry as discussed above has several additional limitations
beyond the deficiency in uniformity of the CIELAB and CIELUV color spaces
that was already addressed above. First, variations among observers’ color
matching characteristics are not comprehended by the CIE standard observer
and can result in a mismatch in colors for an actual color-normal observer,
even when a metameric match is predicted by the standard observer. This
is termed observer metamerism. While the extent of variation cannot be inher-
ently reduced, it is useful to quantify it, because it forms a basis for deciding

† A description of lightness crispening can be found in the next chapter.
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Figure 1.18 “Ellipses” corresponding to a CIEDE2000 color difference of ∆E00 = 1.0
in the a*–b* plane.
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Figure 8: Left: MacAdam ellipses (measured at 2◦ eccentricity) plotted in the xy-chromaticity
diagram (the ellipse sizes are magnified 10 times to be more visible); from Anonymous [2009].
Each ellipse is an iso-discrimination contour, within which all the colors are non-discriminable
from the center, reference color. Middle: Iso-discrimination contours corresponding to a ∆E00

= 1.0 in the a∗− b∗ plane in the CIELAB space; from Sharma [2003, Fig. 1.18]. Right: A set of
MacAdam ellipses in the (chromatic plane of the) DKL space [Derrington et al., 1984] (also see
Chap. 3.3 of the Color Vision Chapter) under two eccentricities; from Duinkharjav et al. [2022,
Fig. 4b].

A color space is said to be “perceptually uniform” if the JND measure is the same regardless
of where the reference color is in the color space. If so, the Euclidean distance is a good measure
of perceptual color differences. Unfortunately, the common CIE XYZ space is not perceptually
uniform. This is demonstrated in the seminar work by MacAdam [1942, 1943] (MacAdam did
the work while working for Eastman Kodak at Rochester and he later was an adjunct professor
at University of Rochester)3. He measured the thresholds in the CIE 1931 xy-chromaticity
space for a set of colors. He found that the thresholds for a reference color fit an ellipse-shaped
contour. Within an iso-discrimination ellipse all the colors are non-discriminable with respect to
the center, reference color. A modern rendition of his results is shown in Figure 8 (left panel);
the ellipse sizes are magnified ten times to be visible. Of course the actual iso-discrimination
contour would be a 3D solid (ellipsoid) in the XYZ space; the ellipses in the xy-chromaticity
diagram are projections of the ellipsoids.

We can see that the not only the iso-discrimination contours (ellipses) are not circles, their
shapes also vary significantly across the gamut, indicating that the XYZ space is not percep-
tually uniform. Quite a few attempts have been made to transform the XYZ space to a more
perceptually uniform space. The two common ones are the CIE 1976 L*u*v* (CIELUV) space
and the (more widely used) CIE 1976 L*a*b* (CIELAB) space, both of which are non-linear
transformations from the XYZ space.

The so-called CIE Delta E 1976 color difference metric (∆E∗
ab ) is defined as the Euclidean

3He did not use a direct threshold-detection strategy, but indirectly estimated the thresholds using variations
in color matching experiments.
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distance in the CIELAB space. If CIELAB is truly perceptually uniform (as far as color dis-
crimination is concerned), ∆E∗

ab being 1.0 would mean a JND. However, this is not true either.
CIE has since recommended a new, much more involved, and non-Euclidean measure in the
CIELAB space, called the Delta E 2000 metric (∆E00), to better achieve better perceptual uni-
formity [Sharma et al., 2005]. The middle panel in Figure 8 shows iso-discrimination contours
corresponding to ∆E00 = 1.0 in the a∗ − b∗ plane in the CIELAB space. If the ∆E00 is to be
considered a perceptually uniform color difference metric in the CIELAB space, the CIELAB
space itself must not be perceptually uniform given the varying contour shapes throughout the
space.

MacAdam’s original data were collected at 2◦ eccentricity. Given that the visual acuity re-
duces as the eccentricity increases, it is only natural that the iso-discrimination ellipses expand
in size as the eccentricity. Duinkharjav et al. [2022] measures the ellipses under different eccen-
tricities. The right panel in Figure 8 compares the results between 10◦ and 25◦. Not surprisingly,
the ellipses are larger in the latter.
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