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Figure 1: A framework unifying visual computing. The fundamental building blocks are the
signals represented in three fundamental information domains: optical, electrical, and semantic.
Visual computing systems transform signals across and process them within these domains.

1 What is Visual Computing?

We can think of many things when it comes to visual computing. Cameras? Yes; they turn
the world into visually pleasing images. Computer Graphics? Yes; they simulate how visually
pleasing images are captured as if there was a camera placed in the scene. Computer vision? Yes;
it interprets visual information (i.e., images) to infer semantic information of the world (e.g.,
object categories). Displays? Yes; they generate visual information (i.e., lights) to represent an
intended scene. What about Augmented Reality (AR) and Virtual Reality (VR)? Of course; in
fact, AR/VR requires all the things above to work seamlessly together.

But what are the fundamental connections of the multitude of things that we can all loosely
associate with visual computing? Figure 1 shows the key concepts that unify the different
fields of visual computing: 1) representing the physical world in three fundamental information
domains, i.e., the optical, electrical, and semantic domains, 2) processing signals within these
domains, and 3) transforming signals across these domains.

We will use the Human Visual System (HVS) as an example to walk through some of the key
concepts (Chapter 2). We will then expand to three more visual computing domains (computer
imaging, computer graphics and rendering, and machine vision), comparing and contrasting how
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the signal representations, processing, and transformations are exercised in different systems
(Chapter 3). We will introduce a power abstraction governing any visual computing systems.
This abstraction allow us to reason about the limits of a system and design ways to improve a
system (Chapter 4).

2 Human Visual System as a Visual Computing Platform

Imagine you are taking a walk in the woods and notice a butterfly. How does your visual system
allow you to notice the butterfly and that it is flying? The input to an HVS are lights from the
butterfly and the trees in the physical world; they are information represented in the optical
domain. The output of the HVS is semantic information, e.g., the color and motion of the
butterfly. The HVS extracts semantics information from the optical signals through a sequence
of signal transformations illustrated as 1 → 4 → 7 in Figure 1.

2.1 Signal Representations, Processing, and Transformations in HVS

Optical Signal Processing

First of all, lights enter your eyes by traveling through the ocular media in your eyes, such as
the cornea, pupil, and lenses, and eventually hit the retina. Just before the lights get processed
by the retina, the optical signal is already being processed as lights propagate through the eye.
This is illustrated by 1 in Figure 1. For instance, the ocular media absorbs photons of certain
wavelengths and transmit photons that are unabsorbed. The pupil controls how many photons
are allowed in at any given time, and the lens bends and focuses lights on the retina — the chief
goal of the eye.

The optical information after eye optics and right before being processed by the retina is
usually called the optical image. An optical image is a lossy and aberrated version of the optical
information in the scene — because the optical signal processing in the eye is lossy. For instance,
by focusing on the butterfly, which is at a particular depth, objects are other depths such as the
trees in the background are blurred. The ocular media also absorb photons selectively across
wavelengths, so the true light spectra in the scene are lost.

Optical to Electrical Signal Transduction

The optical image gets transformed to an electrical representation by the photoreceptors on the
retina. This is step 4 in Figure 1. Photoreceptors absorb incident photons; once a photon
is absorbed, it could, through phototransduction cascade [Wald, 1968] (the discovery of which
won George Wald his Nobel Prize), generate electrical responses in the form of photocurrents
or, equivalently, photovoltages across the cell membrane of the photoreceptor. The responses of
all the photoreceptors form the electrical representation of the optical image. The rest of the
visual system is “just” a hugely complicated circuit that processes the electrical signals from the
photoreceptors. In this sense, the optical to electrical transformation is the first step in seeing.
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This optical to electrical signal transduction is once again lossy. Photoreceptors sample
and integrate signals spatially, temporally, and spectrally. As a result, much of the optical
information of the incident light, such as the incident angle of the rays, the wavelengths of the
photons, and the polarization of the lights, is all lost. The main information that is retained,
light intensity, is fundamentally limited by the sampling and integration, which establish the
limits of vision.

Electrical to Semantic Signal Transduction

The electrical signals produced by the photoreceptors are first processed by the rest of the neu-
rons on the retina, and then transmitted in the nervous system to the rest of the visual system,
first to the Lateral Geniculate Nucleus (LGN) and then to the visual cortex, where the electrical
signals undergo further processing and eventually the semantic meanings of the scene arise. You
might now realize that the object is in fact a red lacewing butterfly (object recognition), the
color of the butterfly is an astonishing bright red and pale brown interlaced by black and white
(color perception), and the butterfly is flapping and flying (motion perception). We lump all
the processing stages after the photoreceptor and call them “post-receptor” processing, which
is denoted by 7 in Figure 1.

The post-receptor processing progressively extracts richer and higher-level information as the
signal progresses through the retina-LGN-cortex pathway. The retina encodes information such
as the spatial/temporal frequency, contrast, and, to a large extend, color. This set information
is generally regarded as “low level” information, which does not in anyway suggest that the
information is somehow inferior; rather, this set information is the building blocks for higher-
order visual processing.

It is no small feat that our retina can extract such information: it must reliably do so
across a very wide range of illumination conditions. For instance, the retina adapts to different
illumination levels spanning several orders of magnitude. Perhaps somewhat surprisingly, much
of the adaptation takes place within the photoreceptors, whose sensitivity changes based on the
incident light intensity. This suggests that photoreceptors are not merely signal transduction
devices.

The LGN and early areas in the visual cortex extract information like edge and orientation,
and other higher-order areas further refine the signals to extract information such as motion,
depth, and object category. Eventually, all these individual bits and pieces are knit together in
our brain to give us perception and cognition, i.e., the semantic signals. Information processing
in the visual system is not purely feed-forward. There are many feedback paths between cortical
areas and between the cortex and the LGN [Gilbert and Li, 2013, Briggs, 2020]. We hasten to
add that while we know a lot about the correlation between the electrical responses and the
semantic signals, we cannot yet say much about the causation.

2.2 The Transformations are Born of Necessity

This complex sequence of transformation that turns the physical realities to one’s subjective
percept is born of necessity. A comparison is another sequence of transformations that computer
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Figure 2: Just like in a computer system, HVS also involves a sequence of transformations and
can be studied at different levels of abstraction.

scientists are perhaps more very familiar with. To have a computer solve a problem for us, we
first describe the algorithm in a program written in a high-level language and then transform the
program to a low-level, machine understandable language (i.e., the Instruction Set Architecture),
which is then executed on the microarchitecture implemented using circuits and, eventually,
moving electrons. If we could directly talk to the electrons and instruct them to move to solve
our problem, this sequence of transformations is not strictly necessary. Similarly, if we could
crack open one’s head and manipulate the neuron spikes at will, we could perhaps directly impose
certain percepts on humans. But since we cannot (easily), the sequence of signal transduction
is necessary. Of course, the sequence of transformation in the computer systems is purposefully
engineered to be that way whereas the one in the HVS is naturally evolved.

The fact that there is a sequence of transformations involved means we can study the HVS
at different levels of abstraction. This idea is illustrated in Figure 2, where, again, we compare
the HVS with a computer system. The goal of a computer system is to solve a problem for us,
and we can study how a computer system solves the problem at different levels of abstraction.
Similarly, HVS reacts to physical stimuli that are presented to it, and we can study, at different
levels, how an HVS reacts to the physical stimuli.

First, we can study it at the psychological level to understand how human psychology, i.e.,
different forms of perception, cognition, and action, varies under physical stimuli (e.g., lights).
This is the field of psychophysics. The psychological experiences one has are a result of the
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collective behaviors of the neurons in the HVS. Naturally, the second way to study the HVS is
to relate the behaviors of the neurons and the neural networks to the physical stimuli. This is
the field of systems neuroscience. Finally, the behavior of a neuron is fundamentally a result of
how cells and molecules function inside and between neurons, so one can study the underlying
cellular and molecular processes given physical stimuli. This is the field of cellular and molecular
physiology.

3 Engineered Visual Computing Systems

While the example above is drawn from a biological system, engineered visual computing systems
such as smartphones are fundamentally no different in that they all involve visual information
represented in and transformed between different domains. We will consider three examples of
engineered systems, and compare and contrast them with those in the human visual system.

3.1 Computer Imaging and Digital Photography

Imaging refers to the task of capturing images of the physical world. Photography is sometimes
used interchangeably with imaging. Just to be pedantic, however, photography is a special case
of imaging where the goal is to capture visually pleasing images for the human visual system.
Scientific imaging is another branch of imaging, where the goal is to capture physically accurate
information for scientific inquiry. Examples of scientific imaging include astrophotography, mi-
croscopy, and Computed Tomography (CT). We will focus on photography here. Conventional
photography is purely analog; think of dark rooms and film development. Modern imaging is
computer-assisted, hence the name “computer imaging”, not to be confused with “computational
imaging” or “computational photography”, which we will see later.

An end-to-end photography system is a complicated sequence of signal transductions involv-
ing 2 → 6 → 5 → 1 → 4 → 7 in Figure 1 Lights enter the camera and are first processed by
the optics in the camera with the main goal of focusing lights ( 2 ), similar to eye optics. Camera
optics are designed completely by humans and we can, therefore, specifically engineer them to
achieve a particular performance, whereas eye optics do not enjoy such flexibilities. An example
is compound lenses, where a combination of lenses of different kinds are cascaded together to
correct various aberrations that a single (spherical) lens introduces.

After the lenses, lights hit the image sensor, whose main job is to transform optical signals
to electrical signals ( 6 ). This is achieved by an array of light-sensitive photodiodes, or pixels,
that convert photons to electric charges—using the photoelectric effect [Einstein, 1905a,b] (the
discovery of which won Albert Einstein his Nobel Prize)—which are then converted to digital
values, i.e., image pixels. From the signal transduction perspective, the pixels in an image
sensor are “just” like photoreceptors on the retina. Vision scientists might take offense at this
comparison, because the photoreceptors, as alluded to earlier, are much “smarter” and do a lot
more than the pixels, e.g., visual adaptation. In fact, an active area of research is to design
pixels so that they adapt like photoreceptors [Liao et al., 2022].

Eventually, an image needs to be displayed for the human visual system to see. The display
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performs an electrical to optical signal transduction, turning digital pixels to lights ( 5 ). The
photons from the display then enter human eyes, and what we have discussed before about the
HVS apply.

3.2 Computer Graphics and Rendering

Computer graphics and rendering systems generate images, where photorealism is the main goal
(although not the exclusive goal). What does it take to render photorealistic images? A rendered
image is photorealistic if it almost looks like a photo taken by a camera, so to render something
photorealistic, we want to simulate how a photo is taken! To that end, we must simulate two
things: 1) how lights transport in space before entering the camera and 2) how lights gets turned
into pixels by a camera, which follows the signal chain in an imaging system.

Comparatively speaking, the second simulation is easier; it amounts to simulating the image
formation process in a camera (i.e., 2 → 6 ). Since cameras are built by humans, we know
exactly how they work at least in principle. The first simulation is much harder, because it
requires simulating the nature: modeling the complicated light-matter interactions ( 5 ).

This is why most compelling rendering systems are physically-based. The kind of physical
models used for rendering are phenomenological in nature; they describe the empirical rules
governing the light-matter interactions but are not always derived from first principles. An
example is that we model light reflecting at material surfaces using Bidirectional Reflectance
Distribution Function (BRDF), which maps energy from incident rays to exiting rays while
abstracting away the details of how photons interact with particles in the material, for which
one has to turn to the theory of radiative/energy transfer [Chandrasekhar, 1960].

Using phenomenological models is sometimes the only option when the actual underlying
physics elude us. More importantly, however, simulating physics at the lowest level is simply
unnecessary for rendering (which cares about photorealism rather than physical realism) and
is computationally too costly for real-time rendering. A recent trend in graphics is neural
rendering [Mildenhall et al., 2021], which parameterizes the phenomenological models using deep
neural networks and learns such models from actual images, which, by definition, are precisely
simulated — by nature.

Similar to photography, the rendered images will also go through an electrical to optical
signal transformation by the display, whose output is then consumed by the HVS.

3.3 Machine Vision Systems

For better or worse, machine vision systems are prevalent in modern society. Autonomous
vehicles use machine vision to navigate the environment, drones are used in agriculture to
monitor crop health, and facial recognition is increasingly used for security authentications. A
machine vision system has two main components: 1) an imaging sub-system that, like discussed
above, transforms the optical information in the scene to the electrical information encoded
by the image pixels ( 2 → 6 ) and 2) a computing sub-system, which uses computer vision
algorithms to interpret the images and extract meanings from the scene ( 8 ).
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At the risk of once again downplaying the capabilities and complexities of the HVS, one
can argue that a machine vision system largely emulate the HVS — from a signal transduction
perspective. Both aim to extract semantical information from the physical world, both do so
by first turning the optical information in the world to its electrical representation, and one
can even go as far as saying that today’s dominant paradigm toward computer vision, i.e., deep
learning, is heavily inspired by the HVS. The field of neuromorphic computing explicitly aims
to mimic the structure and operation of the human brain.

A key difference between imaging in machine vision and imaging for photography is their
respective consumer: the output of a photograph is meant to be consumed by a HVS, so visual
quality is the main consideration, whereas images captured by, for instance, a robot are meant
to be consumed by the downstream computer vision algorithms, which do not care about the
visual appearance as long as the semantics information can be decoded from the images. This
difference influences the design of the imaging system used in photography and for machine
vision.

4 A Powerful Abstraction

A visual computing system enlists the work of multiple stages of signal transformations. At
every stage in an application’s pipeline, we have decisions to make. These decisions should not
be made locally to optimize for a specific stage. A lot of the exciting research in visual computing
is to jointly design and optimize all the stages in an end-to-end system. This section provides
two concrete examples. But before we can entertain them, we want to first introduce a power
abstraction that will allow us to reason about these research ideas.

4.1 The Encoding-Decoding Abstraction

We can take an information-theoretical perspective, and abstract virtually any end-to-end visual
computing pipeline as an encoding-decoding process. Decoding is the ultimate goal, but encoding
is necessary, because it transforms signals to a domain that can be processed by the decoder.
For instance in human vision and machine vision systems, while the ultimate goal is to generate
percepts of the physical world, information in the world must be first encoded as electrical
signals (through imaging), which are what the brain and computer vision algorithms can process.
Imaging itself can also be regarded as an encoding-decoding pair, where the optical information
of the scene is first encoded in the electrical domain and the computational algorithms, acting
as a decoder, reconstruct an electrical representation that faithfully captures the information in
the original scene.

A more complicated example is visual display devices such as a VR headset. When developing
a VR application, we usually have a scene in mind, e.g., a red lacewing butterfly flying in the
woods. We hope that users will perceive the object (butterfly), color (the astonishing bright red
and pale brown interlaced by black and white), and motion (flapping and flying), but we cannot
simply impose these percepts on humans. Instead, we generate visual stimuli on the display
to encode the desired percepts. This encoding is done through a combination of rendering
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(generating electrical signals) and display (converting electrical signals to optical signals). The
entire HVS then acts as the decoder, which ideally would provide the intended percepts to users.

Encoding Capabilities Set the Limits on Decoding

Once we take this encoding-decoding abstraction, we can start reasoning about limits of a visual
computing system. The decoder consumes information generated by the encoder, so its utility
is fundamentally limited by the encoding capabilities. Ideally, the encoder should faithfully
capture all the information in the world. But in practice, encoding is almost always lossy — for
a number of reasons.

First, the actual encoding device used in a system, be it biological or engineered, usually
uses fundamentally lossy mechanisms such as sampling and low-pass filtering (e.g., integration).
Take HVS as an example, where the optical information of the scene is encoded as photoreceptor
responses. The photoreceptors sample the continuous optical image impinges on the retina. The
sampling rate dictates, according to the Nyquist–Shannon sampling theorem [Shannon, 1949],
how well the original optical image can be reconstructed, which in turns limits our ability to see
fine details. Even before the photoreceptor sampling, the eye lens blurs signals in the scene not
currently in focus and the pupil, when very small, further blurs even in-focus objects through
diffraction, setting the first limit of vision. Blurring is a form of low-pass filtering and is one of
the many optical aberrations introduced during the optical signal processing in the HVS.

Second, an encoding device might completely disregard certain information in the incident
signal. For instance, the polarization information in the incident light is simply ignored by
the photoreceptors, whose responses are, thus, invariant to the polarization states. As a result,
humans cannot “see” polarization. Some animals, such as butterflies, have polarization-sensitive
photoreceptors. So it is not surprising that monarch butterflies make use of the light polarization
for navigation [Reppert et al., 2004].

Jointly Design Encoding and Decoding

The encoder-decoder abstraction also allows us to design strategies to enhance a visual comput-
ing system, both augmenting its capabilities and improving its execution efficiency. For instance,
when certain information is not needed for an accurate decoding, it needs not be encoded in the
first place and, of course, will not participate in decoding, reducing both encoding and decoding
costs. Alternatively, if we know what information is crucial for decoding we can design the en-
coding system to specifically capture such information. We can also “over-design” the encoder
to encode signals in a higher dimensional space than the space to which the information is to
be decoded; this essentially introduces redundant samples to improve the robustness to noise.

Ultimately, exploiting these ideas amounts to modeling and, often times, jointly designing the
encoder and decoder, considering the end-to-end requirements of task performance, efficiency,
and quality — of both the humans and the machine. We will discuss two concrete examples.
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4.2 Encoding-Decoding Co-Design: Two Examples

Computational Photography

The optical to electrical signal transduction in the image sensor are lossy due to various forms
of signal sampling and integration. The signal transduction process itself is also not perfect due
to fundamental physical limitations (e.g., quantal fluctuation in photon arrivals) and practical
engineering considerations (e.g., sensor size). As a result, the sensor output, which is usually
called raw pixels, is noisy (especially in low-light conditions) and does not accurately represent
the luminance (especially under bright illuminations) and color information in the scene; certain
information such as light-field and polarization is completely lost.

To overcome these limitations, modern smartphones and advanced imaging systems use
computational algorithms to correct those imperfections, reconstruct the lost information, and
sometimes can even add an artistic touch to the photo. Critically, such computational algorithms
are usually jointly designed with the imaging system, i.e., the optics and image sensor. This is
computational photography, co-designing camera optics, image sensor, and the computational
algorithms to overcome fundamental limitations that conventional imaging systems face.

A classic example of computational photography has to do with a practical problem in
photography. As a contemporary reader, you most likely have had the experience where you
want to use your smartphone camera to capture a scene that has both a very bright region
(e.g., the sunny sky) and a relatively dark region (e.g., a street corner). In technical terms,
such a scene has a very high dynamic range (HDR), in that the ratio between the highest and
lowest luminance in the scene is huge. The challenge is that image sensors on smartphones
cannot capture a wide dynamic range: information at low-luminance region is noisy and high-
luminance regions saturate pixels. So how do we capture the full luminance range in the scene?
This is task of HDR imaging.

People over the years have come up with a variety of clever ideas for HDR imaging. The
most well-known is perhaps exposure bracketing, where we take multiple captures of the scene,
each with a different exposure time, and the computationally combine the captures to synthesize
the full dynamic range in the scene. Another approach is Google’s HDR+ algorithm [Hasinoff
et al., 2016], which takes multiple exposures using the same (low) exposure time to ensure high
luminance regions are accurately captured, which is then followed by denoising algorithms (e.g.,
frame averaging) to recover low luminance information. Yet another approach is the time-to-
saturation (TTS) image sensor [Stoppa et al., 2002], where measures the time it takes for each
pixel to saturate and uses the time to extrapolate the luminance information.

These HDR imaging techniques are all examples where the imaging system, i.e., the encoder,
are intentionally designed to capture critical information (luminance) that is otherwise lost
(either due to noise or due to saturation).

Perceptual Rendering

Perceptual rendering is a classic example that leverages the characteristics of HVS (decoder) to
inform the design of visual display systems (encoder) such as AR/VR or even just smartphones.
We illustrate the basic idea in Figure 3, where imaging, rendering, and computing systems
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Figure 3: In visual displaying devices such as AR/VR and smartphones, the engineered systems
(imaging/rendering/computer systems) act as an encoder and the HVS acts as a decoder. By
understanding the the decoding process, we can then better engineer the imaging, rendering, and
computer systems to maximize end-to-end performance both for humans and for machines. Brain
implants and gene therapy can directly influence the decoding process and must be designed
with the encoder in mind, too.

encode information that is then decoded by the HVS. The output of the decoder, i.e., the
perception, cognition, and action of a human user, is what we care to influence, but what we
actually have influence over, for the most part, is the encoding system (for imaging, rendering,
and computing). If we have a good understanding of the HVS, we can then invert it to solve
for the optimal stimuli, and from there we can then figure out how to optimally engineer the
encoding system to deliver the desired stimuli while maximizing the system efficiency.

Gaze-contingent rendering is a well-known technique in AR/VR that exploits this opportu-
nity. Our peripheral visual acuity is extremely bad: we could not tell the details of an object
in our peripheral vision. This is mainly a result of: 1) a higher degree of low-pass filtering due
to neural convergence in the periphery and 2) a lower rate of sampling in the periphery due to
drastically fewer photoreceptors. When immersed in a virtual environment with a VR headset,
the majority of the pixels rendered and displayed fall in the periphery of the retina. Therefore,
one could improve the rendering speed by generating low-quality visual stimuli for the periphery
with impunity [Patney et al., 2016, Guenter et al., 2012]. We could also alter pixel colors in the
periphery to reduce display power without introducing artifacts [Duinkharjav et al., 2022].

Modern science and engineering have also empowered us to directly influence the decoder
itself through, e.g., brain implants and gene therapy — just imagine how powerful it would be
to directly control a function whose outputs we care about. Similarly, these mechanisms must
be designed with the encoder in mind in order to deliver the desired output.
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