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So far we have assumed that objects have colors because they emit lights. In the real world,
the vast majority of objects have colors not because they emit lights by themselves, but because
they scatter lights from a light source to our eyes. For instance, if the illuminant is white-ish
and a paint scatters only long-wavelength lights (while other photons are either absorbed or
pass through the paint), the paint would look red-ish. Similarly, if we see through an optical
filter such as a sunglass, the sunglass might look, say, blue-ish, because while the light entering
the sunglass might be white-ish, the sunglass allows only short-wavelength lights to go through
and so the transmitted light would look blue-ish, which we mentally equate with the color of
the sunglass itself.

In both cases, the material modifies the energy spectrum of the light illuminating it, and
the modified light that enters our eyes dictates the color of the material. We have to go back to
physics and first principles to model the interaction between light and the material, from which
we can then model the material color.

1 Overview

When a beam of photons hit a material surface, some of the photons will be scattered directly
back to your eyes, others will penetrate into the material. These surface phenomena are governed
by surface scattering. We use the word “scattering” here to generally refer to lights coming
back from the surface. Depending on the material, some of the scattered photons are along the
perfect mirror-reflection directions and other might be more diffuse. You might sometimes see
the word “reflection” used. Reflection sometimes is used in the same way as scattering, which
will be our use, but other times is reserved for the perfect, mirror-like reflection. Usually what
the word means is self-evident given the context, but we will err on the side of verbosity when
we want to mean a specific form of reflection.

Photons that penetrate the surface will further interact with particles in the material, which
absorb, scatter, or might even emit photons. This is called subsurface scattering (SSS) in
computer graphics. Even though we use the term “scattering”, you should know that the actual
SSS processes involve not only scattering but also absorption and emission. It turns out that
the principles that govern SSS are exactly the same as that govern the interactions between
photons and particles in the so-called “participating media”, such as clouds, fogs, and smokes.
In computer graphics, light transport in participating media is called volume scattering, and
again, even though we use the term “scattering”, absorption and emission are usually involved
in the most general cases.

The way to model SSS/volume scattering is different from the way to model surface scatter-
ing: we no longer consider the material as a continuous surface and the light-matter interaction
as photons bounding off of the surface; instead, we break a material down into small particles
and model how photons interact with individual particles.

Very importantly, the difference in the modeling methodology does not imply that there
somehow is a fundamental difference between surface scattering and volume scattering. Ul-
timately, both are caused by the light, an oscillating electromagnetic field, exciting discrete
electric charges. The differences lie in how the charges are arranged in space and in relation to
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one another. The laws that govern how photons interact with the charges are described by the
electromagnetic theories in the classical regime and, in the quantum regime, by the quantum
electrodynamics (QED)1. In fact, using the electromagnetic theories, we can show that surface
reflection/refraction is nothing more than the coherent scattering of incident light waves by the
surface particles.

Since there is no fundamental differences in the underlying physics, the only meaningful
distinction is one between different phenomenological approximations, or “models”, of the same
underlying physics. We totally could invoke the electromagnetic theories or QED, and if we
did, we would have one single unified model that explains both surface scattering (reflection
and refraction) and volume scattering. Doing so, however, is not only unnecessary (because
many, not all, real-world material color phenomena could be modeled without them) and too
computationally expensive, but also, perhaps more importantly, blinds us from the relatively
simple intuitions in each scenario. Instead, each phenomenological model is based on a set of
high-level guiding principles, which are approximates of the underlying physical process but are
sufficient to quantitatively describe light-matter interactions in each scenario.

Johnsen [2012] is a great reference, which has some equations but generally focuses on build-
ing intuitions and mostly uses the electromagnetic language rather than the quantum language.
If you want to get to the nuts and bolts of the mathematical modeling, Bohren and Clothiaux
[2006] is a phenomenal text, whose models are also built in the electromagnetic land. Feynman
[1985] has an accessible and breathtaking introduction of QED that I highly recommend. Dorsey
et al. [2010] is a classic text on material appearance modeling in graphics that covers a range
of topics, including modeling, measurements, and various implementation issues in practice.
Johnston-Feller [2001] is specifically concerned with paintings; it has many interesting discus-
sions of pigments and pigment mixtures, and has many real-world data and insights that are
rarely found elsewhere.

2 Observed Reflection and Transmission

Regardless of the details of surface scattering and volume scattering, a material appears to have
some color because some photons leaving the material enter our eye. If we observe the material
from the same side of the light source, it is the lights reflected from the material that matter.
If we observe the material from the other side of the light source, it is the lights transmitted
through the material that matter.

So at the highest level of abstraction, we can model the material color in the real world by
modeling the observed reflection and transmission from an outside observer: how much of the
incident power is reflected/transmitted back to the eye?

We can quantify the observerd reflection and transmission using the spectral reflectance
function r(λ) and the spectral transmittance function t(λ), respectively. These two func-
tions spare us the details of how lights interact with a material, but describe, at each wavelength

1The electromagnetic theories do not explain everything in light-matter interactions. Famously, they do not
explain how the interference pattern in the double-slit experiment still arises even if the photons are delivered
sequentially.
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Figure 1: Left: apparent spectral reflectance modifies the illumination spectrum and dictates
the observed color; adapted from Wandell [1995, Fig. 9.2]. Right: a photo of Acadia Redfish I
took in the Ripley’s Aquarium of Canada. The fish ordinarily looks red-ish under a white-ish
light, but appears colorless in the aquarium, which simulates the lighting environment in the
deep sea where lights are predominately blue/violet. The spectral data are not accurate and for
the illustration purpose only.

λ, the percentage of optical power that is reflected back to the eye or transmitted through the
material and enters the eye, respectively. The left (a) panel in Figure 1 illustrates this modeling
setup.

Given a light source Φ(λ), the light reflected toward the eye is then Φ(λ)r(λ) and the light
transmitted through the material is Φ(λ)t(λ). We can then calculate the color of these lights
using the cone fundamentals or some set of CMFs, the same way as if the lights were directly
emitted. The math is illustrated in the left (b) panel in Figure 1.

The right panel in Figure 1 is a photo of Acadia Redfish I took in the Ripley’s Aquarium
of Canada. The fish ordinarily looks red-ish under a white-ish light, which suggests that its
spectral reflectance r(λ) peaks at longer wavelengths: it scatters more long-wavelength, i.e.,
red-ish, lights than short-wavelength lights. But the fish appears colorless in the aquarium,
which simulates the lighting environment in the deep sea where lights Φ(λ) are predominately
blue/violet2. As a result, the scattered lights have a rather uniform spectral power distribution,
resulting in a gray-ish appearance.

The left image in Figure 1 makes an important simplification: the reflectance of a point p
on the material is simplified to only a single spectrum. In reality, the reflectance of a point
p depends on both ωi, the direction of the light incident on p, and ωs, the outgoing direction
(leaving p) through which one observes the material. In certain materials where SSS contributes

2which results from a combination of water selectively absorbing medium-to-long wavelengths of light and
increasing scattering of short wavelengths in the Rayleigh regime (Chapter 8.3).
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to the material appearance (e.g., translucent materials like jade), the reflectance can also depend
on lights incident on other points of the material surface. So when we use a single reflectance
spectrum to model material colors, what we have implicitly assumed is that the reflectance spec-
trum has been calculated in such a way that when you multiply it with the incident illumination
you get the scattered light power that is actually observed.

How such a reflectance spectrum can be obtained in measurement (to the extend that it
is a useful high-level abstraction) will be discussed in Chapter 5. The reflectance is a “quick-
and-dirty” abstraction that we often use to give a rough estimation/explanation of a material’s
color, but it is so high-level that it hides lots of the low-level details: what exactly are the
mechanisms in light-matter interactions that give rise to the scattering behavior of a particular
material? The rest of this Chapter essentially answers this question by building physically-based
mathematical models.

3 A Little Bit of Radiometry and Photometry

To be more formal about surface and volume scattering, we need to scientifically define a few
physical properties pertaining to light propagation spatially and angularly. This is called ra-
diometry, which operates completely at the geometric optics level, so we will be describing
lights as a collection of photons, each of which can travel along a particular direction with
certain energy associated with it. Reinhard et al. [2008, Chpt. 6] and Bohren and Clothiaux
[2006, Chpt. 4] have more rigorous treatments of radiometry, and we will here just introduce
the language and a few important radiometric quantities that are relevant to our discussion.

3.1 Energy and Power

Each photon carries a certain amount of energy that is determined by its wavelength governed
by:

Q =
hc

λ
, (1)

where c is the speed of light, λ is the photon wavelength, and h is the Planck’s constant.
Power or, more formally in radiometry, radiant flux is the total amount of energy passing

through some surface in spatial per unit time. Or taking a calculate perspective, power Φ is
defined as:

Φ = lim
∆t→0

∆Q

∆t
=

dQ

dt
. (2)

The way to think about this is that each photon carries a certain amount of energy so if you
monitor photons passing across a surface over a period of time ∆t, you can calculate the average
power of that period by dividing the total energy passed by by ∆t. As ∆t approaches 0, we get
the instantaneous power.
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Of course, energy/power is a function of wavelength, so more rigorously we should be talking
about spectral power Φ(λ), which has a unit of W/nm:

Φ(λ) = lim
∆λ→0

∆Φ

∆λ
=

dΦ

dλ
, (3)

where ∆Φ is the total power within a wavelength interval ∆λ.

3.2 Irradiance

Our power calculation is done with respect to a surface area, but how about the power at each
point on the surface area? You can imagine that some points get more photons and others get
fewer, so it is useful to characterize the power at any given point. Technically, the answer to
the question “how many photons hit a particular point” is zero, since the area of a single point
is 03. The meaningful question is: what the power density of a particular point p? Irradiance
is such a quantity.

Imagine again that you are monitoring photons crossing a surface for a period ∆t; you can
calculate the average power received per unit area by dividing the average power by the surface
area, and when you shrink the surface area to an infinitesimal point p, we can calculate the
power density, i.e., the irradiance, of p by:

E(p) = lim
∆A→0

∆Φ(p)

∆A
=

dΦ(p)

dA
. (4)

Irradiance is a more primitive measure than power, because we can derive the power of a
surface by integrating the irradiance over the surface area:

Φ =

∫ A

E(p)dA. (5)

Irradiance has a unit of Wm−2, and spectral irradiance has a unit of Wm−2nm−1.

3.3 Solid Angle

Irradiance is concerned with the power of all the photons incident on a point, but photons hit a
point from all directions, so how do we quantify the amount of light coming from a direction?

A direction is a vector, which is invariant to translational transformations, so the two parallel
“arrows” r1 and r2 in Figure 2 (left) represent the same vector/direction. Therefore, conceptually
it is easier if we translate all the arrows so that they start from the same origin when we want
to reason about a collection of directions.

3A similar question is: imagine you are throwing darts at a wall; what is the probability of hitting a particular
point p? The answer is 0. The meaningful question to ask is: what is the probability density of hitting p?
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4.1 The General Radiation Field 189

Figure 4.2: The rate at which radiant energy is transported across an area A in a monodirectional
radiation field depends on the orientation of A.

and hence the quantity

N

A cosϑ
, (4.11)

where N is the rate at which photons cross A for any ϑ, is a property solely of the radiation
field. Geometrically, A cosϑ is the area of the surface projected onto a plane perpendicular to
the direction of the beam.

We use the term radiation field to describe the beam. For our purposes a field is any
physical quantity that varies in space and time, usually continuously except possibly across
surfaces. Field quantities often satisfy differential equations.

The (scalar) radiation field (not to be confused with the underlying vector electromag-
netic field) is specified by the radiance L, a non-negative distribution function much like the
distribution functions discussed in Section 1.2. As we show in Section 6.1.2, L satisfies an
integro-differential equation, another reason for saying that L specifies a radiation field. Like
all distribution functions, L is defined by its integral properties, and in general depends on po-
sition, direction, frequency, and time, so we sometimes write it as L(x,Ω, ω, t) to explicitly
indicate these dependencies. At any point in space consider a planar surface of area A, a set
of directions with solid angle Ω, a set of frequencies between ω1 and ω2, and a time interval
between t1 and t2. The total amount of radiant energy confined to this set of frequencies and
directions, and crossing this surface in the specified time interval is given by

∫ t2

t1

∫ ω2

ω1

∫

A

∫

Ω

L(x,Ω, ω, t) cosΘ dΩ dA dω dt, (4.12)

where Θ is the angle between the normal to the surface and the direction Ω. The cosine factor
is introduced so that L is a property solely of the radiation field, not of the orientation of A [see
Eq. (4.11)]. The dimensions of L are power per unit area, per unit solid angle, per unit fre-
quency. The radiance defined by Eq. (4.12) is sometimes called the spectral or monochromatic
radiance, and its dependence on frequency or, equivalently, wavelength sometimes indicated
by a subscript: Lω, Lν , Lλ . The total or integrated radiance is the integral of L over a range
of frequencies. Unless specified otherwise, by radiance we mean spectral radiance.

n

ω
4.1 The General Radiation Field 187

Figure 4.1: The solid angle of the infinite set of directions originating at O and ending on a
surface with area A on a sphere of radius r is A/r2.

two points. Area is the measure of the set of all points within a closed curve on a surface.
And volume is the measure of the set of all points in space within a closed surface. These
measures provide a way of comparing the size of one set of points with that of another. Far
from being abstract, they are the means by which prices are assigned to rope, parcels of land,
and gasoline (the gallon and liter are volumetric measures). Similarly, angle provides a way of
comparing sets of directions in the plane. But directions are not confined to two-dimensional
space. What is the measure of directions in three-dimensional space?

Consider a spherical surface of radius r on which a closed curve is inscribed (Fig. 4.1);
the area of that part of the surface within this curve is A. Every vector from the origin O to a
point on A specifies a direction in space. The measure of the set of all these directions is its
solid angle

Ω =
A

r2
, (4.3)

which lies between 0 and 4π steradians (abbreviated as sr). In principle, Ω can be determined
by evaluating a surface integral:

Ω =
1

r2

∫∫
r2 sinϑ dϑ dϕ =

∫∫
sin ϑ dϑ dϕ, (4.4)

where ϑ and ϕ are spherical polar coordinates (co-latitude and azimuth, respectively) and the
limits of integration are determined by A. Let’s use Eq. (4.4) to determine the solid angle
subtended by the sun at the surface of Earth, by which we mean the solid angle of the set of all
directions from a point on Earth to the sun. We need this quantity later. The sun is azimuthally

r1

r2 !

n
ω

!

"

(a) (b) (c)

Figure 2: (a): a solid angle is measure of the size of a collection of directions in 3D. A direction
is a vector, which is translational invariant, so r1 and r2 refer to the same direction. (b): in
spherical coordinate systems, a 3D direction can be parameterized by two angles, a polar angle
θ and an azimuthal angle φ. (c): radiance is an intrinsic property of the radiation field, but we
can measure it differently. Adapted from Bohren and Clothiaux [2006, Fig. 4.1, 4.2].

How do we count the amount of directions? In 2D, we use a planar angle to measure the
amount of directions. Given an origin O and a vector, we rotate it to generate an arc. The angle
subtended by the arc and O is a measure of the amount of directions we have just covered. The
angle can also be mathematically given by the ratio s/r, where s is the arc length and r is the
radius of the circle. This matches our intuition that if we increase the radius of the circle we
would get a longer arc but the same angle. A full circle has a planar angle of 2π.

We can similarly define the size of a set of directions in 3D. We draw a sphere around O, and
imagine that we have some area on the spherical surface. Connecting O to every point on that
area represents a direction in 3D. So the spherical surface area is a measure of the amount of
3D directions. Like in the 2D case, we want the measure to be invariant to the spherical radius,
so we define solid angle, a measure of the size of a set of 3D directions, as:

Ω =
A

r2
, (6)

where A is an area on a spherical surface and r is the radius. The unit of a solid angle is
steradian (sr), and the entire sphere subtends a solid angle of 4π.

Sometimes we want to know the size of the set of directions from a point O to an arbitrary
surface. We would project that surface to a sphere and get a projected spherical area A, using
which we can invoke Equation 6 to estimate the solid angle subtended by the surface. One useful
trick that might help sometimes is to project the surface to unit sphere (i.e., r = 1), and the
solid angle is mathematically equivalent to the projected area on the unit sphere. But the most
useful intuition I use whenever I am confused about what a particular solid angle means is to
always think of the set of directions/vectors that are represented by that solid angle.
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3.4 Radiance

We can now ask, what is the amount of flux received by a point from a particular direction?
Photons travel in all sort of directions. Let’s consider an imaginary detector with an area A
that is able to receive light from only one direction ω, as illustrated in Figure 2 (right). We can
measure the total flux received by the detector Φ, from which we know that the power per unit
area along the direction ω is simply Φ

A .
Now imagine that we place the detector so that its normal subtends an angle θ with respect

to the light direction ω. Figure 2 (b) explicitly illustrates this angle, where the tilted detector
lies in the xy-plane, and the z direction is the normal n. In a spherical coordinate system, a
direction ω can be parameterized by two angles: a polar angle θ and an azimuthal angle φ.

The total flux received by the detector has changed to Φ cos θ, because the area that is
available to receive photons is now A cos θ. We call this the “effective area”. As a result, the
power per area at the direction ω remains the same, i.e., Φ

A . This is not surprising, because we
are not changing the radiation field, only how we measure it. When the effective area reaches 0
(i.e., the detector is completely parallel to the light direction), the detector collects no photon,
but it certainly does not mean that there is no light in the field.

If we now want to measure light power coming from another direction, we would change
the detector so that it receives lights from only that direction. In reality, this is of course
not possible. No detector can screen lights only from one direction. If we place a detector
in a radiation field, it is going to receive photons from all sorts of directions. We can limit
the directions of photons that the detector collects by placing a baffle that allows only certain
directions to hit the detector.

This setup is illustrated in Figure 3 (left). The total flux collected by the detector is ∆Φ,
the detector size is ∆A, and the solid angle subtended by the baffle is ∆ω. The average power
collected per unit “effective area” per unit direction by the detector is then:

∆Φ

∆A cos θ∆ω
. (7)

The baffle does a good job of rejecting many directions that are outside ∆ω, but unless it is
infinitely long, the detector will still collect some photons traveling through directions outside
∆ω. But as we reduce the detector size and the baffle size, the baffle becomes a very thin
cylinder over a very small detector, which collects light from a very small area along a very
small solid angle, visualized in Figure 3 (right)4. In calculus terms, when we let the detector
size and baffle’s solid angle approach 0, we obtain the quantity called radiance:

4It is just a visualization convention, but visualizing dω as a cylinder rather than a cone makes it easier to
imagine what dA cos θ is like.
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ω
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detector area !A

ω
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area dA
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infinitesimal 
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Figure 3: Left: the baffle limits the directions through which incident photons can be collected
by the detector. As we reduce the solid angle of the baffle ∆ω and the detector ∆A, the average
power per unit “effective area” per unit solid angle approaches L(p, ω), the radiance at position
p along direction ω. Right: intuitively we can think of a point (an infinitesimal area) receiving
lights from a single direction (an infinitesimal solid angle) as just a tiny area intercepting a tiny
cylinder.

L(p, ω) = lim
∆ω→0

lim
∆A→0

∆Φ

∆A cos θ∆ω
(8a)

=
d

dω

dΦ(p)

dA cos θ
=

d2Φ(p)

dωdA cos θ
(8b)

=
dE(p)

dω cos θ
(8c)

=
dE⊥(p)

dω
(8d)

Equation 8b is the definition of radiance, and it can be re-written to Equation 8c given the
definition of irradiance (see Equation 4). Radiance is an intrinsic property of the radiation field,
and the reason we have the cos θ term in the definition is merely due to the way we have chosen
to measure the property (using a detector that is θ-oriented). Radiance has a unit of Wm2sr−1,
and spectral radiance has a unit of Wm2sr−1nm−1.

Radiance is a density function: the density of power at a point along a direction. As with
any density function, it is useful when it gets integrated to compute some other quantities. For
instance, given the radiance L(p, ω), the irradiance at p is given by:

E(p,Ω) =

∫ Ω

L(p, ω) cos θdω. (9)

Here we write the irradiance as E(p,Ω) to explicitly mean that the irradiance depends not
only on the specific position p and the solid angle Ω over which the lights are coming.

Looking at the effective area in Figure 3, if the irradiance at the infinitesimal area p is dE(p),

the irradiance at the (infinitesimal) effective area, which is projected from dA along ω, is dE(p)
cos θ .
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reflection model has been significant in the 
evolution of realistic image synthesis methods and 
is still widely in use. The formulation includes 
ambient and diffuse terms that provide surface 
color and shading, and a specular term that 
provides realistic highlights from direct light 
source reflections. Based upon the 
Torrance-Sparrow reflection model [II], Blinn [2] 
suggested improvements which recognized that the 
magnitude of the specular component is related to 
the intensity that reaches the surface from the 
mirror direction. 

Cook and Torrance [3] proposed a reflection model 
that describes the behavior of llght in terms of 
energy equilibrium and electromagnetic wave theory. 
Application of this model results in a very 
realistic appearance when rendering a wide variety 
of materials with varied surface finishes. 
Unfortunately, the model requires spatial 
integration of the global illumination information 
to provide the incident energy on a surface. None 
of the present methodologies for image synthesis 
are able to generate the information required for 
application of this model to situations other than 
an isolated object suspended in space. 

In an attempt to solve the global illumination 
problem, the ray tracing methodology was introduced 
by Whitted [13]. Ray tracing is used as a method 
of determining the global illumination information 
that is relevant to the image plane [6]. This 
method traces a ray from the eye through each pixel 
into the environment and generates new reflected 
and/or refracted rays at each surface a ray 
strikes. The reflection models employed to date in 
ray tracing approaches are empirical in nature and 
do not account for the required energy conservation 
conditions. Furthermore, the ray tracing 
methodology, which inherently provides only 
polnt-sampled information, is not sufficient for 
the application of energy equilibrium models to 
light behavior. Lastly, due to the "tree of rays" 
approach, only the intra-environment specular 
effects are considered. 

Many existing reflection models require the 
addition of an ambient or background illumination 
term. The magnitude of this ambient term is 
usually specified arbitrarily. The procedure 
described in this paper correctly accounts for surface normal 
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Figure i. Geometry of Radiation Leaving a 
Surface. 

not only the "global ambient" term [7, 13, 6], but 
also the object-to-object reflection between 
diffuse surfaces. In section 2, the theory and 
mathematical formulations are presented. Section 3 
describes the program implementation. Resultant 
images are shown in section 4 and photographic 
results of a physical model appear in section 5. 

2 Theory And Mathematical Formulation 

This section describes a method for determining the 
magnitude and color composition of light reflected 
within an environment. The major assumption is 
that all surfaces are ideal diffuse (i.e., 
Lambertian) reflectors. Illumination sources and 
surface reflective properties can be arbitrary 
within this constraint. The analysis, which is 
explained below, is similar to that used in thermal 
engineering for the calculation of radiative heat 
exchange in enclosures [8, I0, 14]. 

The analytical procedure is built up by first 
introducing the concept of radiant intensity. 
Radiant energy in the form of visible light is 
presumed to emanate in all directions from a 
differential element of area, dA (Figure I). The 
radiant intensity in a particular viewing direction 
is: 

i = dP/(cosCdm) (I) 

where, 
i ffi intensity of radiation in a particular 

viewing direction, expressed as the 
radiant energy leaving a surface per unit 
time per unit projected area (projected 
in the viewing direction) per unit solid 
angle (watts/meter**2 steradians) 

dP = the radiant energy leaving the surface in 
the direction ~ within a solid angle 
de expressed per unit time and per unit 
surface area (unprojected) 
(watts/meter**2) 

= polar angle measured from the surface 
normal to the viewing direction 
(degrees) 

de = differential solid angle of the pencil 
of rays (steradians) 

view 
direction 

intensity = i = k 

o 

Energy = d P = kcos~ 
unit solid angle dw 

Figure 2. Ideal Diffuse Reflection from a 
Surface. 
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Lobe of radiant intensity

Lobe of radiance !

ω

Figure 4: Comparison between the radiance distribution (constant w.r.t. viewing direction
ω) and radiant intensity distribution (weakens by a factor of cos θ) of a Lambertian emit-
ter/scatterer. Adapted from Goral et al. [1984, Fig. 2].

Combine this with Equation 8c, we can interpret the radiance L(p, ω) in a different way: it is
the ratio between dE⊥(p), the infinitesimal irradiance defined at the surface perpendicular to
the light direction, and the infinitesimal solid angle. This is shown in Equation 8d.

Using this interpretation of radiance, we can also give a more operational interpretation
of Equation 9: we first calculate the infinitesimal irradiance dE⊥(p) = L(p, ω)dω made by
lights at the direction ω, then “transfer” that to the infinitesimal irradiance at the detector
surface through the cos θ factor, and then repeat this for all the directions and accumulate the
contributions.

3.5 Lambertian Emitter, Radiant Intensity, and Lambert’s Cosine Law

A Lambertian emitter or an ideal diffuse emitter is a flux-emitting point whose emitted
radiance is constant regardless of the outgoing direction. A related concept is a Lambertian
scatterer or an ideal diffuse surface, which is a surface point where the scattered radiance is
independent of the scattering direction.

It might come as a surprise that the flux emitted by a Lambertian emitter through a fixed
solid angle is different for different emission directions. Consider a setup where a Lambertian
emitter has an infinitesimal area dA. The power emitted by dA toward its normal direction in
an infinitesimal solid angle of dω is dΦ0 = LdωdA, where L is the radiance. The power emitted
toward an oblique direction ω through the same solid angle is dΦθ = Ldω cos θdA.

In radiometry, the ratio of infinitesimal power and infinitesimal solid angle is called the

11
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radiant intensity5, denoted I:

I(ω) =
dΦ

dω
. (10)

I is a meaningful measure only for a point source (e.g., our infinitesimal Lambertian emitter
here). We can see that for a Lambertian emitter, the radiant intensity decays by a factor of
cos θ: dΦθ

dω = dΦ0
dω cos θ. This is usually called the Lambert’s cosine law, named after Johann

Heinrich Lambert, from his Photometria [Lambert, 1760]. Similarly, if we have a Lambertian
scatterer, its scattered radiant intensity will also decay by cos θ as the polar angle θ of the
viewing direction ω increases.

Figure 4 compares the radiance distribution and radiant intensity distribution of a Lam-
bertian emitter/scatterer. Both distributions are over the entire hemisphere but we show only
a cross section. The distributions are visualized as two lobes, and the distance of a point on
the lobe to the origin is proportional to the value at that point. The radiance distribution is
constant regardless of ω but the radiant intensity is proportional to cos θ. This difference stems
from the fact that intensity is defined with respect to the power at the detector/emission area
(dA) while radiance is defined with respect to power at the effective area (dA cos θ).

3.6 The Measurement Equation in Camera Imaging

We will study this more carefully in the imaging lecture, but given that we have the basic
understanding of radiometry, it is probably a good time to show you how radiometry is of
fundamental importance to camera imaging. For simplicity, let’s just consider one single pixel.

Each pixel is very small, but it has a finite area, say Ap. Each pixel is constantly being
bombarded by lights that enter the aperture, which has a size V . The raw pixel value is roughly
proportional to the energy it receives during the exposure time6. So using the basic radiometry,
we can write the total energy received by a pixel during the exposure time T as:

Q =

∫ T ∫ Ap
∫ Ω(p,V )

L(p, ω) cos θ dω dp dt, (11)

where Ω(p, V ) explicitly expresses that a solid angle is determined by the aperture V and a
point p on the pixel surface. Of course this quantity changes with p. We sometimes omit p and
V when it is clear what Ω refers to, but here since the solid angle changes with the dummy
variable p in the integral equation we express it explicitly. This equation is sometimes called
the measurement equation of an image sensor in computer graphics (see [Kolb et al., 1995],
[Reinhard et al., 2008, Chpt. 6.8.1], and [Pharr et al., 2023, Chpt. 5.4]). Usually the inner
integral over the solid angle is expressed as an spatial integral over the aperture; the derivation
is available in standard texts and is omitted here.

5Or simply, the “intensity”, which is an extremely overloaded term, so we will be verbose and use “radiant
intensity.”

6Assuming there is no noise and there is no quantization error in converting analog signals to digital signals.
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We can see, again, that radiance is the most fundamental quantity. Knowing the radiance
distribution in camera, we can in theory synthesize the value of any pixel and, thus, an entire
image. How do we know the radiance distribution inside a camera? We can calculate it if we
know 1) the distribution of the radiance impinging on the camera optics and 2) the material
properties of the camera optics (e.g., lenses, filters, etc.). The effects of the camera optics are
nothing more than surface scattering and volume scattering, so using the principles introduced
in this Chapter we can in theory convert the radiance distribution outside the camera (in the
scene) to that inside the camera.

3.7 Light Field

There is a name for the distribution of the radiance in the space — it is called the light field,
which refers to the complete set of all the possible radiances flowing through every possible
direction. Knowing the light field of a scene, we can in theory synthesize any image captured
by any camera — limited only by the limitations of geometric optics. This is fundamentally
because given the light field information, we can estimate the irradiance, power, and energy of
any thing at any time at will.

The field of light-field imaging is concerned with capturing the light field of a scene.
Light-field display is a 3D display technology that attempts to reproduce the light field of a
scene, which is usually captured beforehand by some sort of light-field imaging technique. Re-
producing the light field provides the depth information of a scene that is missing in conventional
2D displays, is one of the technologies to an immersive experience (other technologies include
varifocal displays, multi-focal displays, and holographic displays).

Light-field rendering is concerned with rendering a new image/photo at a novel perspec-
tive given a set of photons taken at other perspectives. It is a form of image-based rendering.
The idea is that each image capture is a sample of the light field followed by a low-pass filter
(i.e., the integration in Equation 11). Rendering an image at a new perspective is a classic
signal sampling and reconstruction problem, where the new image is nothing more than another
sample of the light field. In this sense, many familiar tasks such as interpolating between video
frames, panoramic photography, (stereoscopic) 360◦ video rendering are all light-field rendering
in disguise.

As with any signal resampling task, the ideal solution to light-field rendering is to first
estimate the underlying light field from a set of samples, and then re-sample the light field
given the new perspective. Signal filtering is necessary for both signal reconstruction and anti-
aliasing, and the name of the game used to designing good filters that are practically useful
and computationally tractable. Of course, modern-day image-based rendering treats the whole
problem as a deep learning/neural network problem and learns the light field from massive
amount of data. The key seems to be figuring out a good representation of the 3D geometry of
the scene.

13
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3.8 Photometric Quantities

Spectral radiant flux (power), irradiance, radiant intensity, and radiance are all radiometric
quantities. They all have a photometric counterpart, which weighs the radiometric quantity
by the luminous efficiency function (LEF). The LEF, as we have discussed in the Color Vision
Chapter, at a particular wavelength is inversely proportional to the radiometric quantity at each
wavelength needed to produce the same level of perceptual brightness.

For instance, given a spectral radiant flux Φ(λ), the corresponding photometric counterpart
is then:

Φv(λ) = KΦ(λ)V (λ), (12)

where Φv(λ) is the spectral luminous flux, V (λ) is the LEF, and K is a constant that, for
historical reasons, takes the value of 683.002. The total luminous flux is then:

Φv =

∫

λ
KΦ(λ)V (λ)dλ. (13)

Luminous flux has a unit of lumen (lm), so K has a unit of lm/W. We can also weigh the
radiant power by the scotopic LEF, in which case K = 1700 (lm/W).

Other radiometric quantities can be similarly converted to the photometric counterparts.
Specifically,

• the photometric counterpart of irradiance is illumination, which has a unit of lx = lm/m2,
which is also called the lux;

• the photometric counterpart of radiance intensity is luminous intensity, which has a
unit of cd = lm/sr, which is called the candela;

• the photometric counterpart of radiance is luminance, which has a unit of lm/(m2sr) =
cd/(m2), which is also called the nit.

Sometimes radiometric vs. photometric quantities are also called the radiant vs. luminous
quantities. The way to interpret the photometric quantities is that they take into account the
spectral sensitivity of a particular photodetector, which in our case is the photoreceptors on the
retina. But if we use other detectors, such as an image sensor, we will have a different spectral
sensitivity, and the corresponding photometric measurements will be different. We will study
the spectral sensitivity of image sensors in later chapters.

A radiometer measures the absolute radiometric quantities, whereas a photometer reports
photometric quantities. An image sensor and our retina can both be thought of as a photometer
but the spectral sensitivities in the two cases are different, so the raw pixel readings and the
photoreceptor responses are different even under an identical illumination.
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4 Surface Scattering

When a group of photons arrive at a material surface, some of the photons might be immediately
turned away (i.e., reflected) while other might penetrate into the material (i.e., refracted). The
refracted portion causes SSS, which we will discuss next. In surface scattering, what we care
about is the reflected portion. There are two properties we care about in surface scattering:
the directions of the reflection and the energy along each direction. These two properties are
captured by what is known as the BRDF of the surface-scattering point.

4.1 BRDF

Generally, the energy distribution of the surface scattering is captured by the Bidirectional
Reflectance Distribution Function (BRDF) [Nicodemus et al., 1977]. Informally, it tells us how
the incident energy from a particular direction is distributed to different exiting directions. The
BRDF is parameterized by three parameters, a surface point p, the direction of light incident on
p, denoted ωi, and the direction of light leaving p, denoted ωs. So the BRDF is usually written
as fr(p, ωs, ωi).

The way to understand BRDF fr(p, ωs, ωi) is to consider the following. L(p, ωs), i.e., the
radiance leaving p toward ωs, is dependent on the light incident on p. When the incident light
on p comes from only the direction ωi, the irradiance at p is zero, since the solid angle of a
single direction ωi is zero, so naturally L(p, ωs) is 0 (assuming there is no other light hitting p).
When p receives lights from a non-zero solid angle of directions ∆ωi (centered around ωi), the
irradiance of p is increased by ∆E(p, ωi). At the same time due to this increase in incident light,
L(p, ωs) is no longer zero; the increase in the radiance leaving p over ωs is denoted ∆L(p, ωs).

As we increase ∆ωi, both ∆E(p, ωi) and ∆L(p, ωs) increase. BRDF is defined as the ratio
of the two increments when ∆ωi approaches 0 (when the radiance along all directions in ∆ωi
can be thought of as a constant):

fr(p, ωs, ωi) = lim
∆ωi→0

∆L(p, ωs)

∆E(p, ωi)
=

dL(p, ωs)

dE(p, ωi)
=

dL(p, ωs)

L(p, ωi) cos θidωi
. (14)

A Useful Approximation

Now assume that we illuminate p through a finite, but small, solid angle Ωi. Turning the
differential equation to an integral equation:

15
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L(p, ωs) =

∫ Ωi

fr(p, ωs, ωi)dE(p, ωi) (15a)

=

∫ Ωi

fr(p, ωs, ωi)L(p, ωi) cos θidωi (15b)

≈ fr(p, ωs, ωi)
∫ Ωi

L(p, ωi) cos θidωi (15c)

= fr(p, ωs, ωi)E(p,Ωi), (15d)

fr(p, ωs, ωi) ≈
L(p, ωs)

E(p,Ωi)
. (15e)

The derivation proceeds as follows:

• The simplification from Equation 15b to Equation 15c assumes that the BRDF is a constant
over all the directions in Ωi.

• The integration in Equation 15c has no analytical solution, since we do not know the
analytical form of L(p, ωi), but we know the integration is just another way of expressing
the total irradiance incident upon p over Ωi, which is denoted as E(p,Ωi). This gets us to
Equation 15d.

• To be more rigorous, the integration in Equation 15c evaluates to E(p,Ωi)+C, where C is
a constant. Given the boundary condition that L(p, ωs) = 0 when E(p,Ωi) = 0, we know
C = 0, so C is omitted.

Ultimately, we can see from Equation 15e that the BRDF fr(p, ωs, ωi) can also be calcu-
lated as the ratio between the absolute radiance L(p, ωi) and the absolute irradiance E(p,Ωi)
illuminated from a very small, but finite solid angle Ωi. Another way to interpret this is that
the so-calculated BRDF is the average BRDF over Ωi. This derivation is useful for actually
measuring a BRDF, which we will discuss in Chapter 5.2, where we will have to use a non-zero
solid angle for illumination, because physically we just cannot illuminate a point through an
infinitesimal solid angle dωi.

Isotropic Material

A 3D direction ω expressed in the Cartesian coordinate system can also be expressed by two 2D
planar angles in the spherical coordinate system: the polar angle θ and the azimuthal angle φ.
So BRDF can also be parameterized as fr(p, θs, φs, θi, φi). A material is isotropic if its BRDF
satisfies fr(p, θs, φs, θi, φi) = fr(p, θs, φs+x, θi, φi+x) for any x. An intuitive way to think of an
isotropic material is that its color does not change if you pick a point p and rotate the material
about the normal vector at p, the color of p does not change. This is because rotation about
the normal vector keeps θi and θs unchanged and varies φi and φs by the same amount.

The nice thing about an isotropic BRDF is it can be parameterized with one fewer degree
of freedom: fr(p, θs, φs − φi, θi). This is because it is (φi − φs) rather than the specific values of
φs or φi that matter.

16



4.2 Reflectance and Albedo CSC 259/459 Lecture Notes

4.2 Reflectance and Albedo

The BRDF does not have to be a value between 0 and 1. Let’s say that there is a 100 J of
energy incident on a point coming from a solid angle ∆ωi. That amount of energy is distributed
across all the outgoing directions in the hemisphere, which forms a solid angle of 4π/2 = 2π.
So on average the energy exiting per direction is 100

2π J , which clearly is greater than 1. This
is not surprising, since BRDF is ultimately a density measure, a distribution, which is most
meaningful when it is integrated to calculate some quantity. Integrating the BRDF gives a
percentage/fraction measure between 0 and 1, i.e., reflectance, which we will discuss next.

For the energy to be conserved, the total outgoing energy at any point must not exceed that
of the incident energy received by that point. Assume that a point p receives an irradiance
dEi from a direction ωi over an infinitesimal solid angle dωi, the outgoing radiance along the
direction ωs due to that irradiance is fr(p, ωs, ωi)dEi. Then the outgoing irradiance leaving
p over an infinitesimal solid angle dωs around ωs would be fr(p, ωs, ωi)dEi cos θsdωs. If we
integrate all the outgoing directions, we get the total outgoing irradiance dEo, which must not
exceed the incident irradiance dEi:

dEo =

∫ Ω

dEifr(p, ωs, ωi) cos θsdωs (16a)

⇒
∫ Ω

fr(p, ωs, ωi) cos θsdωs =
dEo
dEi

= ρdh(p, ωi) ≤ 1. (16b)

dEi is independent of ωs, so it can be hoisted out of the integration, which gets us Equa-
tion 16b, which holds for any arbitrary incident direction ωi. ρdh is defined as the ratio between
dEo and dEi. When Ω is the hemisphere, ρdh is called the directional-hemispherical re-
flectance in the computer vision and graphics literature, and is interpreted as the percentage of
energy scattered by a point over the entire hemisphere given the incident light from a particular
direction. Clearly, ρdh is a function of both p and ωi and takes a value between 0 and 1.

Since we are dealing with geometric optics, the Helmholtz reciprocity holds:

fr(p, ωs, ωi) = fr(p, ωi, ωs), (17)

which means the energy conservation can also be expressed as:

∫ Ω

fr(p, ωs, ωi) cos θidωi = ρhd(p, ωs) ≤ 1, (18)

where ρhd is called the hemispherical-directional reflectance when Ω is the hemisphere. ρhd,
a function of p and ωs, is interpreted as the percentage of energy reflected toward a particular
direction ωs given the incident energy over the entire hemisphere.
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Equation 18 can be derived by first re-writing Equation 16b as
∫ Ω

fr(p, ωi, ωs) cos θsdωs ≤ 1
(using the reciprocity) followed by switching ωs and ωi (simply a change of notation). This
derivation suggests that ρhd(p, ωi) = ρdh(p, ωs), a natural consequence of the reciprocity7.

We can also describe the relationship between all the outgoing irradiance Eo of a point over
a solid angle Ωs due to all the incident irradiance Ei over a solid angle Ωi:

Eo =

∫ Ωs (∫ Ωi

fr(p, ωs, ωi)L(p, ωi) cos θidωi

)
cos θsdωs ≤ Ei =

∫ Ωi

L(p, ωi) cos θidωi. (19a)

ρhh(p) =
Eo
Ei
≤ 1. (19b)

Equation 19b defines ρhh, which is called the hemispherical-hemispherical reflectance
when both Ω1 and Ω2 are hemispheres. ρhh has another name: albedo. When fr(p, ωs, ωi)
is independent of (invariant to) ωi and ωs, i.e., when p is an ideal Lambertian surface (see
Chapter 4.4), Equation 19a can be re-written as:

Eo = Eiρhh(p) =

∫ Ωs

fr(p, ωs, ωi)(

∫ Ωi

L(p, ωi) cos θidωi) cos θsdωs (20a)

=

∫ Ωs

fr(p, ωs, ωi)Ei cos θsdωs (20b)

=Ei

∫ Ωs

fr(p, ωs, ωi) cos θsdωs (20c)

=Eiρdh(p, ωi), (20d)

where Equation 20b is derived using the definition of Ei in Equation 19a, Equation 20c is
derived since Ei is independent of ωs, and Equation 20d is derived by using the definition of ρdh
in Equation 16b.

We can see that for a Lambertian surface the albedo (ρhh) is equivalent to ρdh and ρhd, but
this relationship is not true in general. We can also show that for a Lambertian surface, the
BRDF is the constant ρhh

π . Starting from Equation 20c:

Eiρhh = Ei

∫ Ωs

fr(p, ωs, ωi) cos θsdωs = Eifr(p, ωs, ωi)

∫ Ωs

cos θsdωs = Eifr(p, ωs, ωi)π (21a)

⇒ fr(p, ωs, ωi) =
ρhh
π

(21b)

The derivation uses the integral results that:

7For instance, if ρhd(p, ωi) = 1
1+ωi

2 , then ρdh(p, ωs) must take the form ρdh(p, ωs) = 1
1+ωs

2
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dω = sin θdθdφ, (22a)
∫ Ω=2π

cos θdω =

∫ 2π

0

∫ π/2

0
cos θ sin θdθdφ

= 2π

∫ π/2

0
cos θ sin θdθ

= π, (22b)

when Ω is the hemisphere.
You might be thinking that, mathematically, for Equation 20a to hold fr just needs to be

independent of ωi, but not ωs, so do we really need to assume a Lambertian surface here? It
turns out that if fr is independent of ωi it must also be independent of ωs (can you prove this?8)
and, thus, must be a constant (i.e., ρhh

π in Equation 21b) for a given p.
Finally, one can also define the directional-directional reflectance, which is naturally a

function of both the incident direction and outgoing direction and can be defined as the ratio
between the incident irradiance and the outgoing irradiance when both the incident and outgoing
solid angles approach 0.

To compare the BRDF and directional-directional reflectance, both are sensitivity to both
the incident and outgoing directions. But the former is a density measure whereas the latter is
a fraction/percentage measure. Integrating BRDF over a finite set of directions gives us some
measure reflectance. This is why the BRDF is defined as the radiance/ irradiance ratio rather
than radiance/radiance or irradiance/irradiance ratio; it is to reflect the fact that the energy
of a small cone of incident directions is distributed over all the directions over the hemisphere
and what we care to characterize is the distribution of the incident energy over all outgoing
directions.

4.3 The Rendering Equation

Given the BRDF, we can estimate the outgoing radiance of a point given its illumination using
the well-known Rendering Equation.

The setup is that we have a surface on which there is a point p that is receiving lights from a
solid angle Ω. We are interested in calculating the exiting radiance leaving p toward an arbitrary
direction ωs. The rendering equation formulates this calculation by:

L(p, ωs) =

∫ Ω

fr(p, ωs, ωi)L(p, ωi) cos θidωi, (23)

where L(p, ωs) is the outgoing radiance from p toward the direction ωs; Ω is usually a hemi-
sphere in surface scattering, since lights hitting a surface point can come from anywhere in the

8One informal way to do so is the following. Since fr(p, ωs, ωi) is independent of ωi, let’s re-write it as g(p, ωs).
Now we invoke the reciprocity and rewrite fr(p, ωs, ωi) as g(p, ωi). The only way for g(p, ωs) = g(p, ωi) is for g
to be dependent only on p.
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hemisphere, in which case Equation 23 is also called the reflection equation, indicating the fact
that the equation governs surface reflection/scattering.

The rendering equation is exactly the same equation in Equation 15b, so there is nothing more
profound about the rendering equation than the definition of the BRDF: we are simply following
the BRDF’s definition and turning the differential equation into an integral one. Intuitively, the
way to understand this equation is that every ray that hits p makes some contribution toward
the outgoing radiance L(p, ωs), and the integration just accumulates all the contributions. In
particular:

• L(p, ωi)dωi is the incident irradiance of a differential solid angle dωi; note that the irradi-
ance calculated here is defined with respect to a surface perpendicular to the direction of
ωi.

• L(p, ωi) cos θdωi applies the Lambert’s cosine law and calculates the irradiance at the
surface where p lies.

• fr(p, ωs, ωi)L(p, ωi) cos θdωi “transfers” the differential incident irradiance to the differen-
tial outgoing radiance toward ωs through the BRDF function.

• The integration over all the incident direction calculates the total outgoing radiance given
all the incident lights.

The rendering equation in theory allows us to calculate the entire light field, i.e., the radiance
distribution in space, given an arbitrary p and ωs. Why is knowing the light field important?
Recall Equation 11: knowing the light field allows us to synthesize any image or calculate the
color of any object from any perspective.

It is of course much easier said than done when it comes to solving the rendering equation,
which itself is worth multiple chapters in a computer graphics textbook. We will not get into it
here; let’s just consider the following challenges. First, the integrand in Equation 23 generally has
no analytical form, so we will not be able to get an analytical solution to the integral equation.
A common method is Monte-Carlo integration, which samples the integrand at different points
and estimates the integral from the samples.

Second, in a realistic environment we need to solve the rendering equation recursively. Note
how the radiance function shows up on both sides of the equation. Put it in another way, when
using Monte-Carlo integration to solve Equation 23 we need to sample the value of L(p, ωi) for
a specific ωi — how? We evaluate Equation 23 again, but this time treating ωi as the ωs, which
means we invoke Monte Carlo integration again. You can see how this can quickly blow up the
computation: the number of rays whose radiances we need to calculate exponential increases
as long as we need to sample more than ray at each point. A big chunk of physically-based
graphics is devoted to addressing this issue; the most commonly used strategy is called path
tracing, for which Pharr et al. [2023, Chpt. 13] is a great reference.

Another way to think of this is that there are infinitely many paths through which lights can
propagate and incident on a point. A global illumination method for rendering would attempt
to track all these paths (e.g., through Monte Carlo methods). In contrast, a local illumination
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method is concerned with only a small subset of these paths, in which case we might be able
to evaluate the rendering equation as a single-pass integration while avoiding recursion. For
instance, we might consider lights only from direct light sources. We will see the counterpart
of this exact situation in surface scattering/volume rendering in Chapter 9. For this reason,
the rendering equation is sometimes called the light transport equation (LTE), because it in
principles captures how light is transported in space9.

An interesting, and approximate, global illumination method that avoids path tracing is the
idea of environment map [Ramamoorthi, 2009, Chpt. 3]. It assumes that the light sources
are so distant from the objects in the scene that all points in the scene receive the same incident
radiance distribution. That is, L(p, ωi) in Equation 23 is a function of only ωi but not p. We
can then pre-compute (through path tracing for instance) or directly measure L(ωi) offline and
store them in a data structure. For instance, we can use the equirectangular projection to store
a discretized form of L(ωi), or use spherical harmonics to (approximately) store a parameterized
form of L(ωi). Either way, the data structure that stores pre-computed L(ωi) is called an
environment map, which we can load at rendering time, plug it into the rendering equation, and
calculate the outgoing radiance by simply evaluating the integral.

Finally, we also need to somehow know the BRDF of the material. There are generally
two methods of going about it. We can of course measure it, but we have no realistic way of
measuring the complete BRDF for a material, because we would have to measure infinitely many
points and, for each point, infinitely many incident and outgoing directions. We can only sample
the BRDF, but there is still a massive amount of samples we need to take and to store. We will
discuss the technical instrument and calculations that go behind measuring and calculating the
BRDF in Chapter 5.2.

Another approach is to parameterize the BRDF so that we can evaluate the BRDF on-
demand rather than storing all the BRDF data, and this is what we will discuss next.

4.4 Specular vs. Glossy vs. Diffuse Materials

In everyday life material surfaces are usually classified into being specular, glossy, or diffuse. Fig-
ure 5 shows examples of the three materials. We can now give a more rigorous treatment of these
material types using BRDF, which will, in turn, give us some inspirations for parameterizing
the BRDF.

Perfectly Specular Material

If a surface is perfectly smooth, like a mirror, it is called a perfectly specular material. Such
materials follow the Snell’s law, which governs the angles of reflection and refraction, and the
Fresnel equations, which govern the energy of reflection and refraction.

In the plane of incidence (the plane uniquely determined by the incident direction and the
surface normal), the reflection direction is symmetric about the surface normal as the incident

9To be exact, the LTE sometimes has an emission term at the right-hand side to denote the spontaneous
emission from a surface point.
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direction. More precisely, if the incident direction is ωi (parameterized by the polar angle θi and
azimuthal angle φi) and the reflection direction is ωs (θs, φs), we have:

θs = θi, (24a)

φs = φi + π. (24b)

The refraction/transmitted direction ωt (θt, φt) follows:

n1 sin θi = n2 sin θt, (25a)

φt = φi + π, (25b)

where n1 is the refractive index of the medium where lights come and n2 is that of the medium
that reflects/refracts the lights.

The energy of the reflected and refracted light is governed by the Fresnel equations. We
will spare you the details, but it suffices to say that the fractions of reflected/refracted light
are dependent on the incident angle, refractive indices of the two interface media, and the
polarization states of the light. If you work out the math and assume that the incident light is
unpolarized, the percentage of reflected energy Fr(ωi) for an incident direction ωi is given by:

Fr(ωi) =
ra + re

2
, (26a)

ra = (
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

)2, (26b)

re = (
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

)2. (26c)

We call Fr(ωi) the specular reflectance, which not only varies with ωi but also is also a
spectral term; we omit the wavelength for simplicity. Assuming no loss of energy, the specular
transmittance, i.e., the fraction of the transmitted energy, is given by 1− Fr.

Fresnel’s equations are best understood in the context of the electromagnetic theory and
are derived by treating lights as waves in an electric field (the fact that we need to consider
polarization states of a light is a giveaway). While Fr cannot be derived from radiometry,
it is fundamentally about the energy transfer of surface scattering, which radiometry is also
concerned with. So Fr can be integrated into the radiometry framework. One good example is
to express the BRDF of a specular material using Fr:

fr(p, ωs, ωi) = Fr(ωi)
δ(θs − θi)δ(φs − φi − π)

cos θi
, (27)

where δ(x) is the Dirac delta function, which is 0 everywhere except when x = 0 and has the
property

∫
δ(x)dx = 1.
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We can verify that this BRDF makes sense. First, the BRDF is non-zero only when Equa-
tion 24 holds because of the double-delta term. Second, the energy conservation is followed. For
instance, if we calculate the directional-hemispherical reflectance by plugging the BRDF into
Equation 16b and assuming Ω is hemisphere, we get:

Eo
Ei

= ρdh(p, ωi) =

∫ Ω

Fr(ωi)
δ(θs − θi)δ(φs − φi − π)

cos θi
cos θsdωs (28a)

= Fr(ωi)

∫ Ω δ(θs − θi)δ(φs − φi − π)

cos θi
cos θsdωs (28b)

= Fr(ωi). (28c)

Since Fr(ωi) is independent of ωs, Equation 28a evaluates to Equation 28b. The integration
in Equation 28b evaluates to 1. This is because, informally, the integrand is non-zero only when
Equation 24 holds, at which point θs = θi, so the cosine terms cancel out. So the integration is
just sort of a hugely complicated way of writing

∫
δ(x)dx, which is 1.

We can see that the specular reflectance Fr is equivalent to ρdh, the directional-hemispherical
reflectance. This makes sense, because in specular materials the scattering is directional if
the incident light is directional. So the directional-hemispherical reflectance reduces to the
“directional-directional” reflectance, which is essentially the specular reflectance.

The specular reflectance is also equivalent to the hemispherical-directional reflectance ρhd.
We can show this either by simply invoking the reciprocity that ρhd = ρdh, or by plugging the
BRDF into Equation 18 and obtaining (assuming Ω is hemisphere):

ρhd(p, ωs) =

∫ Ω

Fr(ωi)
δ(θs − θi)δ(φs − φi − π)

cos θi
cos θidωi (29a)

= Fr(ω̂s) = Fr(ωs), (29b)

where ω̂s(θs, φs − π) is the mirror-reflection direction of ωs(θs, φs). The integral evaluates to
Fr(ω̂s) because, informally, the integrand is non-zero only when Equation 24 holds, at which
point ωi = ω̂s so Fr(ωi) = Fr(ω̂s); the integral is a complicated way of writing

∫
Fr(ωi)δ(ω̂s −

ωi)dωi, which evaluates to Fr(ω̂s). The result has an intuitive explanation: for a specular
surface, the scattered energy along ωs given a hemispherical illumination is the same as when
the illumination comes only from ω̂s. We can then show that Fr(ω̂s) = Fr(ωs), which is not
surprising given reciprocity; you can also verify it by going through the equations in Equation 26.

Interestingly, the specular reflectance Fr in general is not equivalent to the hemispherical-
hemispherical reflectance ρhh. To see this, plug the specular BRDF into Equation 19a (assuming
Ωi and Ωs are hemispheres):
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Specular Diffuse Glossy

Figure 5: Left: a specular material and its BRDF. Middle: a diffuse material and its BRDF.
Right: a glossy material and its BRDF. From Prabhu B Doss [2007]; Daderot [2012]; Steve
Fareham [2007]; VonHaarberg [2018c,a,b].

Eo =

∫ Ωs

(

∫ Ωi

fr(p, ωs, ωi)L(p, ωi) cos θidωi) cos θsdωs (30a)

=

∫ Ωs (
Fr(ωs)L(p, ωs)

)
cos θsdωs (30b)

=

∫ Ωi

Fr(ωi)L(p, ωi) cos θidωi, (30c)

Ei =

∫ Ωi

L(p, ωi) cos θidωi. (30d)

We can see that only when Fr(ωi) is a constant do we get Fr(ωi) = Eo
Ei

= ρhh. Interestingly,
when Fr(ωi) is constant, the specular material is isotropic (can you prove it?). Since Fr(ωi) do
not have to be a constant, specular materials could be anisotropic. That is, it is theoretically
possible that a material always reflects specularly, but the reflected energy depends on the
incident direction.

Diffuse Material

When the surface is rough, the energy of surface reflection deviates away from the perfect mirror-
like reflection and, instead, distributes across the hemisphere. When the surface becomes rough
enough, the distribution of outgoing energy can become uniform across all outgoing directions
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over the entire hemisphere. Such a surface is called a diffuse or an ideal Lambertian surface.
The perfect Lambertian surface does not exist, but many things in the real world come close,
such as paper, marble, or wood.

The BRDF is a Lambertian surface is a uniform function. As we have seen in Equation 21b,
fr(p, ωs, ωi) = ρhh

π when ρhh is the surface albedo and is between 0 and 1. It is easy to see that
diffuse materials are always isotropic.

Glossy Material

The surface scattering in most materials is in-between being perfectly specular and perfectly
diffuse. These materials scatter lights to a small cone of directions, usually centered around
the direction of a perfect reflection. These materials are usually called glossy or sometimes,
confusingly, “specular” too. The energy distribution of a glossy material is neither a Delta
function (as in the perfectly specular case) not a uniform function (as in the diffuse case). It
usually is a function that peaks at the mirror-reflection direction and gradually decays as we
move away from that direction.

The bottom figures in Figure 5 illustrate an example of the BRDF for each of the three
surface types — under a given incident direction. An actual BRDF (for a given surface point
and a given incident direction) would be a 3D shape, and what we are showing here is the cross
section. The shape of the locus is drawn to be proportional to the magnitude of the BRDF; the
locus in graphics literature is sometimes called the specular lobe.

The spectral-lobe visualization give us a hint: we can parameterize a BRDF by mathemati-
cally describing the shape of the specular lobe. In fact, the BRDFs for the Lambertian surface
and for the specular materials are two such examples; see Equation 27 and Equation 28. A
glossy BRDF is more difficult to parameterize. Many BRDF parameterizations have been pro-
posed; some are empirical while others attempt to be physically plausible. The most popular
and widely used is based on the microfacet model, which we will discuss next.

4.5 BRDF Parameterization with Microfacet Models

The assumption of the microfacet model is that the surface scattering behavior of a point depends
on its local roughness: the rougher the surface, the more diffuse the surface scattering becomes.
To model the roughness, the surface is modeled as a collection of small microfacets, each of
which acts like a perfect mirror. A specular surface is one where all the microfacets have the
exact same orientation. As the surface becomes rougher, the mirrors become more randomly
oriented. When the mirrors are completely randomly oriented, the resulting surface scattering
becomes diffuse.

To derive a microfacet model, we need to first define the orientation of each microfacet.
Given a beam of incident lights from a particular direction, we can then trace, following the laws
governing specular reflection, how the lights are scattered by the collection of the microfacets
given their orientations. In the end, we obtain the collection of outgoing directions, from which
we can derive the BRDF.
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Figure 6: Triphasic profile of object property. Object property at both the macroscopic scale
and at the atomic/molecular scale fluctuates wildly, but at there is a scale where the property
does not very much. Models based on radiometry operate at this scale. This scale is sufficiently
small (smaller than the spatial resolution of human vision and typical cameras) so our calculus
machinery can be applied, but still larger than individual molecules and atoms so that we do
not have to worry about the wild fluctuations at that scale.

There are many variants of the microfacet model. They have one thing in common: they
do not explicitly model the scattering of each ray at each microfacet but, rather, model the
scattering of the microfacets statistically given the distribution of the microfacet orientations.
In the end, they can either have an analytical form of the BRDF (Lambertian surface being
an extreme example), have a close approximation of the analytical form, or can numerically
estimate the BRDF efficiently (mostly through sampling).

Without going into the details, we will refer you to Pharr et al. [2023, Chpt. 9.6] for a
mathematically treatment of the general idea and to Torrance and Sparrow [1967]; Cook and
Torrance [1982]; Ward [1992]; Oren and Nayar [1995]; Walter et al. [2007] for the classical models.

Microfacets Models are Discrete Models Applied to a Continuous Domain

If the microfacet theory does not sound weird to you, it should!
In a microfacet model, we are still modeling surface scattering using discrete objects (micro-

facets) and events (perfect mirror-like reflection on each microfacet). Is it surprising that we can
use the discrete microfacet model to reason about the behavior of a continuous surface? Given
any point p on a surface, wouldn’t p correspond to one single microfacet and the behavior of p
simply be the result of a perfect mirror reflection there? If so, how can the microfacet model
describe non-specular surface scattering of glossy and diffuse materials?

An intermediate answer is that the microfacet theory is just a modeling methodology. We use
a set of discrete microfacets to derive the surface-scattering statistics of that set of microfacets,
but then simply assume that the so-derived statistics applies anywhere on a continuous surface
of interest. Still, does this methodology reflect the physical reality?

Well, the physical world is fundamentally not continuous; when we break down the surface
into finer and finer scales we eventually get to molecules and atoms, so the surface property
undergoes wild fluctuations depending on whether a small area contains molecules or not. If
that is the level of detail you want to get into, you have to model things at the molecular and
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atomic levels (or even lower). Figure 6 illustrates this idea.
Fortunately for many real-world use-cases, we do not have to go there. Our eyes have a

resolution limit, so we cannot resolve the details of a tiny surface area anyways; image sensors
also have a resolution limit. The just-resolvable area δA, set by the spatial resolution limit of our
visual system, is more than large enough that it contains many microfacets, so the aggregated
behavior of those microfacets can effectively model the observed scattering of δA, which is all
that matters to our vision (and to computer graphics and imaging, which is concerned only with
satisfying human vision). So effectively what the microfacet theory does is to assume that the
small δA (which contains a distribution of microfacets) is just within the range where the surface
scattering property is stable. When the microfacet theory says something about a particular
point p, it is really saying something about δA.

This way of modeling and thinking is pervasive in radiometry, which uses differential and
integral equations and thus has inherently assumed that the radiation field under modeling is
continuous. That is not true. Take irradiance as an example. The average irradiance of a surface
changes dramatically at the microscopic level when we initially reduce the surface area, because
the photon distribution over a large area is likely very non-uniform. When the surface area is
sufficiently small, the number of photons hitting the surface will change proportionally with the
surface area, because at that scale the photon distribution is roughly uniform. This is the scale
at which irradiance is defined. But if we keep reducing the area smaller and smaller, the amount
of photons hitting a tiny area will, again, undergo wild fluctuations depending on whether there
are photons in the area of not — photons are discrete packets of energy. We will see another
example shortly in volume scattering, where we use a small volume of discrete particles to build
a model for radiative energy transfer, which we then apply to any given point in a continuous
volume.

Orthogonal to the discussion above is the limitation that microfacet models do not account
for the surface roughness on the scale of the light wavelength. In the regime where the length
of each microfacet is comparable with the light wavelength, diffraction takes place. As a result,
reflection does not follow the Snell’s law and is wavelength dependent. In fact, this is how
we get iridescence; in engineering people make diffraction gratings that take advantage of the
wavelength dependency to disperse lights of different wavelengths.

5 Measuring Spectral Reflectance and BRDF

This section talks about measuring the spectral reflectance or spectral BRDF. It is absolutely
important to note that the measured reflectance is not necessarily attributed only to surface
scattering, because the measurement setup does not care what the material being measured is.
If SSS plays a role (e.g., translucent materials), the resulting reflectance data would include the
contribution from volume scattering, too.

Worse, for these materials not all the SSS influences are captured by this measurement
geometry, since some back-scattered photons will exit at other surface points, which will not
be captured by the detector. So the measurement is neither complete nor sound for materials
where back-scattered photons contribute to their reflectance.
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5.1 Measuring Spectral Reflectance

How do we know the spectral reflectance (transmittance) of a material? We measure it. This
is easier said than done. We will focus on the reflectance measurement here, but transmittance
is measured similarly, except you are not measuring from the same side of the illuminant, but
from the other side. Sharma [2003, Chpt. 1.11.4], Trussell and Vrhel [2008, Chpt. 8.7], and
Reinhard et al. [2008, Chpt 6.8] have overviews of various measurement devices that might be
helpful.

The Importance of Measurement Geometry

Consider Figure 1 (a) again. The illuminant emits lights everywhere, but what matters is the
light incident on the point p the viewer is currently gazing; of course the incident lights could
come from everywhere else in the space, not just a particular illuminant. Similarly, p could
potentially scatter lights everywhere over the hemisphere (through surface scattering and/or
SSS), but it is the small beam of light that enters the viewer’s eye that matters. In order the
measure the reflectance that is relevant to this particular illumination-viewing geometry, we
need to 1) measure all the illuminating power that hits p and 2) measure the scatter light from
p only along the viewing direction.

You can imagine that if we change the illumination to be, say, a diffuse lighting where there
is an equal amount of light hitting p from all directions, the reflectance would be different, and it
would be a perfectly relevant reflectance measure to report. If you have not, next time when you
visit an art museum, pay attention to how the lighting system is carefully set up to bring out the
best viewing experience (while also considering conservation); you ideally want the reflectance
measurement of an artifact to simulate the viewing lighting.

Single Reflectance Measurement

In general there really is no single reflectance number we can associate with a material. There
are two ways to approach this. A common approach is to set up the measurement geometry
so that it is close to an actual viewing experience. Figure 7 (a) shows four common settings.
Some might illuminate the material from 0◦ (assuming the direction of the surface normal has
an angle of 0◦) and then measure the scattered lights at 45◦; thers can illuminate the material
using diffuse illumination and measure the reflectance at 0◦ (see Judd and Wyszecki [1975, p.
122-125], Reinhard et al. [2008, Chpt. 6.8.2], and Li [2003, Chpt. 2.2.2]).

To get a reflectance spectrum, we need to know the reflectance at each sampled wavelength.
There are multiple ways to go about measuring the spectral information. For instance, we can
place a monochromator or a set of optical filters between the illuminant and the material so
that we can control the wavelength of the light that is incident on the material.

Alternatively, we can change the detector to measure spectral information. We can use
a dispersive medium such as a prism, shown in Figure 7 (c), or a diffraction grating, shown
in Figure 7 (d), to separate the scattered light into different wavelengths and measure them
individually. A detector that is capable of measuring the spectral radiometric quantities (e.g,
the spectral power distribution) is called a spectroradiometer.

28



5.1 Measuring Spectral Reflectance CSC 259/459 Lecture Notes

(a)

(c)

The object reflectance samples can therefore be determined as 

Mathematically, it can be seen that the detector sensitivity, dk, and the illu-
minant, , cancel out and have no impact on the measurement. However,
to obtain good performance in the presence of quantization and measure-
ment noise and errors due to the limited dynamic range of the detectors, it
is desirable that the product of these quantities be nearly constant as a
function of wavelength. For similar reasons, it is desirable that the reflectance
of the standard sample be close to unity at all wavelengths. To avoid unnec-
essary duplication of the optics and sensors, the measurements of the refer-
ence standard and the object are usually performed sequentially instead of
using the parallel scheme shown in Figure 1.33. In addition, for added
convenience and to save time, typical measurement devices make one mea-
surement of the standard that is stored and used for a number of successive
object measurements. 

Because most real-world reflectances are relatively smooth functions of
wavelength303 and have low dimensionality as discussed in Section 1.11.2,
most spectrophotometers work with much larger sampling intervals than
spectroradiometers, typically reporting reflectance at 5-, 10-, or 20-nm inter-
vals. The built-in illumination in these devices is usually a filtered incandes-
cent or xenon arc lamp whose spectrum is smooth (unlike fluorescent lamps)
and therefore does not unduly amplify the measurement noise and quanti-
zation errors. Spectrophotometers used in color work usually sample the
spectrum in the 380- to 780-nm range, although the lower-wavelength end
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Figure 1.33 Spectrophotometer measurement.
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6.8. Measurement of Optical Radiation 355

Extruded detector
surface

Screen Screen

Figure 6.21. An extruded detector surface. Paths of three of the light rays are depicted
with dashed lines. The rays incident from narrow angles are received by the top of the
detector, while the rays incident from wide angles are received by the edges. Screening
prevents contribution of light from very wide angles.

The solution to this problem is called cosine correction and can be achieved
in several ways. Most detectors have highly diffuse covers to minimize the re-
flectance of the detector. In addition, the detector surface may be extruded to
enable light entrance through the edges of the detector as well. Such a detector is
depicted in Figure 6.21. In this case, light arriving from the horizontal direction
(θ = 90 ◦) should be blocked with proper screening. A second alternative is to use
an integrating sphere to average out light arriving from a very wide solid angle.

6.8.6 Measurement of Radiance and Luminance

Radiance and luminance are best measured with a spectroradiometer, which can
also reveal the wavelength distribution of electromagnetic radiation. Luminance
may be computed from radiance with built-in circuitry.

Detector array
380 nm 800 nm

Aperture
Incoming radiation

Diffraction grating

Depolarizer

Figure 6.22. Incident radiation passing through the aperture is depolarized and diffracted
into its constituent components. Each component impinges on the detector cell sensitive to
that wavelength.

(d)

(b)

Figure 7: (a): Four different illumination-viewing geometries to measure the reflectance of a
material; from Judd and Wyszecki [1975, Fig. 2.11]. (b): A spectrophotometer, which takes
two spectroradiometric measurements of the standard material with a known reflectance and a
test material to calculate the spectral reflectance of the test material; from Sharma [2003, Fig.
1.33]. (c): A spectroradiometer design, which measures the spectral power distribution of a light
source (self-luminous or scatterring) using a prism; from Judd and Wyszecki [1975, Fig. 2.1].
(d): Another way to implement the spectroradiometer that uses diffraction grating to disperse
incident light; from Reinhard et al. [2008, Fig. 6.22].
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The raw detector readings of a spectroradiometer are usually not the absolute radiometric
quantity of interest. The raw recording is, instead, roughly proportional to radiometric quantity
up to a constant scaling factor k(λ), which is usually called the detector’s spectral sensitivity of
responsivity function (Chapter 3.8), which we will study carefully in the image sensor lecture.
k(λ) can be calibrated offline, and that allows us to turn a detector’s raw recording to the
corresponding absolute radiometric quantity.

We take a spectroradiometric measurement of the illumination hitting the material and that
of the scattered light of interest; the ratio is the spectral reflectance ρ(λ):

ρ(λ) =
Φs(λ)K(λ)

Φi(λ)K(λ)
=

Φs(λ)

Φi(λ)
, (31)

We can see that for reflectance measurement, the exact values of k(λ) are immaterial. A
curious question is that, while the detector can measure Φs(λ), what measures Φi(λ)? One
strategy is to, offline, place the same detector where the material is and directly measure Φi(λ)
there.

Another, perhaps much more common and standard, way to measure spectral reflectance is
to use something called spectrophotometer. This method does not need to know Φi(λ), but
requires a reference sample with a known spectral reflectance. This is shown in Figure 7(b). It
takes two spectroradiometric measurements under the identical illumination: one for the test
material and the other for the standard/reference sample. The spectral reflectance of the test
material ρt(λ) is given by:

ρt(λ) =
mt(λ)

ms(λ)
ρs(λ), (32)

where ρs(λ) is the known spectral reflectance of the standard/reference sample, ms(λ) and
mt(λ) refer to the raw detector readings of the standard and the test material at wavelength
λ, respectively. We can see that the spectrum of the illumination does not matter. Sometimes
mt(λ)
ms(λ) is called the spectral reflectance factor of the test material if the reference material is

perfectly diffuse [Judd and Wyszecki, 1975, p. 93].
In practice, the reference measurement can be done separately rather than simultaneously

with the test material to reduce the device form factor, and the reference measurement data can
be tabulated to save measurement time.

One note on terminology: while a spectroradiometer is used to measure the spectral radio-
metric quantities (e.g., spectral radiance), a spectrophotometer does not measure the spectral
photometric quantities (e.g., spectral luminance); instead, it measures the spectral reflectance.
This is standardized in American Society for Testing and Materials (ASTM) E284-13b ASTM
International (along with other terminologies related to material properties and measurement
instruments).

The nice thing about the approach described so far is that you get a single reflectance
spectrum, but be very careful under what measurement geometry is the spectrum obtained.
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Figure 8: A setup for measuring goniometric reflectance and BRDF. Both the illuminant
(source) and the detector (photometer) can vary in two degrees of freedom, (θi, φi) for the source
and (θs, φs) for the detector, covering different illuminant-scattering combinations. Adapted
from Judd and Wyszecki [1975, Fig. 3.4].

There is no guarantee that a particular measurement geometry corresponds to the illumina-
tion/observation geometry of an actual viewing experience, so use the reported reflectance data
with that caveat in mind.

Goniometric Measurements

A more general approach is to measure the reflectance at every illumination-vs-viewing direction
combination. For that we need what is called a goniospectrophotometer10. Figure 8 shows
one such setup. The illuminant/light source incident on the material comes through the small
aperture I, and the scattered light from the material is captured by a detector (e.g., a photodiode
or, essentially, a single-pixel image sensor) through another aperture V . Transmittance can be
similarly measured by placing the detector at the other side of the material.

The idea is to simultaneously sample, say, N illumination directions (parameterized by the
azimuth φi and polar angle θi) and M scattering directions (parameterized by the azimuth φs and
polar angle θs), and obtain M ×N measurements, each of which corresponds to one particular
combination of the illuminant and scattering directions. For convenience, commercial goniomet-
ric measurements usually use a beam splitter to simultaneously measure the illumination and
scattering flux [Lanevski et al., 2022; Rabal et al., 2012].

10“gonio-” comes from the Greek word γωνια (gōńıa), which means angle. There are also gonioradiometers,
which measure the spectral radiometric quantities from different viewing directions.
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Denote the area on the material being measured Ar. The size of the area is dictated by the
illumination aperture I. Assuming the power received by Ar from the illuminant through I is
Φi(λ,Ar, I), and the power scattered by Ar and collected by the detector through the aperture
V is Φs(λ,Ar, V ), the reflectance of the small area Ar is simply given by:

ρ(λ,Ar) =
Φs(λ,Ar, V )

Φi(λ,Ar, I)
. (33)

As the two apertures become very small, Ar becomes very small and the incident and outgo-
ing solid angles become very small, too. The resulting reflectance measurement can be thought
of as estimating the directional-directional reflectance (Chapter 4.2). But in general you
can see how the reflectance number can easily change when we slightly vary the hardware setup.
For instance, if we increase the detector aperture V , the detected power will increase, and that
would increase the resulting reflectance. If we increase the illumination aperture I, the resulting
reflectance would be for a larger material area Ar.

One can also use a reference material (with known reflectance spectra at the same measure-
ment geometries) so as to avoid measuring Φi(λ,Ar, I), similar to how a spectrophotometer is
operated.

5.2 Measuring BRDF

Reflectance is integrated from the BRDF, which suggests that the latter is a more fundamental
measure of material property. The same setup shown in Figure 8 can also be used to measure
the BRDF, in which case the setup is called a goniospectroreflectometer. We will take the
same measurements, but with a bit more calculations we can estimate the BRDF of the material,
rather than just the (goniometric) reflectance spectra.

Let us be precisely about the setup (omitting the λ term in all relevant quantities).

• We are illuminating a small area Ar through the illumination aperture I.

• The center of Ar is an infinitesimal point p, which along with I subtends a solid angle
Ωi(p, I).

• ωi is the direction between p and the center of I.

• Ar scatters lights toward the detector through the detector aperture V , which subtends a
solid angle of Ωs(p, V ) with p.

• ωs is the direction between p and the center of V .

• The power incident on Ar is Φi(Ar, I), and the portion of the power scattered by Ar and
collected by the detector is Φs(Ar, V ).

• We are interested in calculating the BRDF fr(p, ωs, ωi).
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Recall that fr(p, ωs, ωi) is defined as the ratio of the difference in radiance leaving p toward
ωs over the difference in irradiance incident on p due to the lights coming from an infinitesimal
solid angle dωi (omitting λ in all equations for simplicity):

fr(p, ωs, ωi) =
dLs(p, ωs)

dEi(p, ωi)
(34a)

≈ Ls(p, ωs)

Ei(p,Ωi(p, I))
. (34b)

There is no way we can illuminate a point p through an infinitesimal solid angle dωi; all we
could do is to illuminate a small cone of directions Ωi(p, I). We can then calculate the average
BRDF of all the directions in Ωi(p, I) using Equation 34b (i.e., assuming the BRDF is the same
for all the outgoing directions in Ωi(p, I)), whose derivation is shown in Equation 4.1.

How do we calculate Ei(p,Ωi(p, I))? There is no way we can illuminate and measure the
irradiance of an infinitesimal point p; all we can do is to illuminate a small area Ar and assume
that the irradiance received is constant anywhere inside Ar, so we have:

Ei(p,Ωi(p, I)) ≈ Φi(Ar, I)

Ar
. (35)

Now how do we get Ls(p, ωs)? For this we turn to the detector side. Using basic radiometry,
Φs(Ar, V ) is expressed in Equation 36a, where p′ and ωs

′ are dummy variables, θ′s is associated
with ωs

′, and Ωi(p
′, V ) is associated with p′ (c.f., p refers to a specific point on Ar, and ωs and

Ωs(p, V ) refer to physical quantities associated specifically with p):

Φs(Ar, V ) =

∫ Ar
∫ Ωs(p′,V )

Ls(p
′, ω′s) cos θ′sdωs

′dp′ (36a)

≈
∫ Ar

∫ Ωs(p,V )

Ls(p, ωs) cos θsdωs
′dp′ (36b)

= Ls(p, ωs) cos θs

∫ Ar
∫ Ωs(p,V )

dωs
′dp′ (36c)

= Ls(p, ωs) cos θs(Ar(Ωs(p, V ) + C1) + C2) (36d)

≈ fr(p, ωs, ωi)Ei(p,Ωi(p, I)) cos θsArΩs(p, V ) (36e)

≈ fr(p, ωs, ωi)
Φi(Ar, I)

Ar
cos θsArΩs(p, V ). (36f)

The rest of the derivation proceeds as follows:

• We assume that the radiance of any ray between Ar and the detector aperture V is constant
and takes the value of Ls(p, ωs); this gets us Equation 36b.
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• Since Ls(p, ωs) and cos θs are invariant to ωs
′ and p′, they can be taken out of the two

integrations, and this gives us Equation 36c.

• Calculating the two integrals in Equation 36c gives us Equation 36d, where C1 and C2 are
constant. Given the boundary condition that Φs(·) has to be 0 when Ωs(·) or Ar is 0 (if
the detector aperture is closed or the illumination area vanishes, no scattered light will be
detected), we know C1 = C2 = 0.

• Plugging Equation 34b we get Equation 36e.

• Plugging Equation 35 we get Equation 36f.

Equation 37a gives the final BRDF:

fr(p, ωs, ωi) =
Φs(Ar, V )

Φi(Ar, I) cos θsΩs(p, V )
(37a)

=
[Φs(Ar, V )/(Ar cos θs)]/Ωs(p, V )

Φi(Ar, I)/Ar
. (37b)

While the derivation seems excruciating, Equation 37b gives a simple interpretation. The
denominator is the average irradiance incident on p through a small solid angle Ωi(p, I) (see
Equation 35), and the nominator is the average radiance leaving p. Taking the ratio of the two
matches our intuition of the average BRDF: radiance over irradiance (received over a small solid
angle). In particular, Φs(Ar, V )/(Ar cos θs) gives us the average irradiance leaving p (note that
this radiance is defined at the surface perpendicular to Ar, hence the cos θs term).

If we assume the surface to be Lambertian, the BRDF is then 1/π for any ωs (under a given
p and ωi; see Equation 28) assuming no loss of energy. This means:

Φs(Ar, V ) ∝ cos θs. (38)

That is, the flux reading weakens as the incident direction θ by a factor of cos θ. Is this
surprising? It should not be if you recall our discussion of radiant intensity (Equation 10). If
we assume that every point on Ar emits the same amount flux to the same solid angle (through

the aperture V ), the radiant intensity of p toward ωs is to Φs(Ar,V )
ArΩs(p,V ) and, thus, proportional

to cos θ, which matches our earlier conclusion of how the radiant intensity of a Lambertian
emitter/scatterer decays with θ.

Anytime you measure something the measurement is subject to noise and uncertainty. For
instance in the case of gonioreflectometer measurement, the angular positioning of the illuminant
and detector might not be accurate, the detector itself is subject to all sorts of measurement
noise (which we will study in the image sensor lecture), and there might be stray lights that
enter the detector. Quantifying the sources of uncertainty and, even better, correcting for them
is an important part of reflectance/BRDF measurement [Lanevski et al., 2022; Rabal et al.,
2012].
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Figure 9: At the Air-Material 1 interface, photons are either reflected directly back or penetrate
into the material through refraction. The refracted photons interact with the material particles
through the volume scattering processes, where some photons are absorbed and others penetrate
into Material 2. For someone observing from the outside, a portion of the photons would
eventually leave the material composite altogether and re-enter the air. Some of these leaving
photons are call the back-scattered photons that contribute the apparent surface reflectance;
others transmit through the materials and contribute to the apparent transmittance of the
material composite.

6 Subsurface and Volume Scattering: Informal

Once inside the material (through surface refraction), a photon roams about until it meets a
particle. The interactions between photons and particles are governed by the subsurface scat-
tering (SSS) or volume scattering processes.. As noted before, photon emission, absorption,
and scattering all take place during the SSS/volume scattering processes, not just scattering,
even though the names suggest otherwise. We will generally ignore emission in our discussion
unless otherwise noted, but just note that emission does happen, and is correlated with absorp-
tion, since emission is the result of absorbed photons having (e.g., chemical) reactions with the
particles.

Also a reminder that SSS and volume scattering are governed by exactly the same principles,
because they are exactly the same thing. In computer vision and graphics literatures they might
be used to refer to superficially different phenomena. Volume scattering is concerned with
materials that can be modeled as a volume of particles like fog, clouds, and smoke; they are
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given the name participating media in computer graphics. SSS is, instead, more commonly
used to refer to solids where subsurface-scattered photons contribute to their observed colors.

Subsurface scattering is so termed to distinguish itself from surface scattering, but what is
beneath the surface is nothing more than a volume of particles. In fact, what is above the surface
is also a volume of particles. Looking at Figure 9, the air, Material 1, and Material 2 can all be
thought of as participating media. We usually model the air as vacuum so photons traverse in
straight lines undisturbedly, but if we were to be exact we would want to model the particles
in the air, which becomes a participating medium. So “above-surface scattering” is as different
from as surface scattering as is subsurface scattering.

6.1 General Intuitions

We will use Figure 9 as a running example to discuss the life of photons inside the material.
At the Air-Material 1 interface, photons are either reflected directly back or penetrate into
the material through refraction. When a refracted photon meets a particle, the particle might
absorb the photon or scatter it away. If absorbed, the photon is “dead” and can be removed from
the discussion. If scattered, the photon might appear to change its direction and continue to
travel on a straight line until it meets another particle, so in principle a photon can be scattered
multiples.

There are three fates a photon eventually has to accept: 1) it might be absorbed along the
way, 2) it might re-emerge from Material 1 back to the air, or 3) it might emerge to the air from
the bottom of Material 2. Absorption is easy to understand: a photon has a certain probably of
being absorbed when it meets a particle so the long it travels and more likely it will be absorbed.
Let’s examine the other two cases where a photon escapes the media.

• After multiple scattering, some of the initial photons enter Material 1 from the air will reach
the Material 1-air boundary again, but this time from the material side. At that point,
the photons necessarily go through another round of reflection-refraction governed by the
surface scattering processes. The refracted photons will re-emerge from Material 1. This
is called back-scattering, because these photons are scattered back to where they come.
As a consequence, when we observe the material from the same side of the illumination,
the lights that enter our eye come from two sources: the initial surface scattering and the
back-scattering.

• Some photons might leave Material 1 from the other side and enter Material 2, in which
photons go through the same volume scattering processes, where some are absorbed, some
can be turned back to Material 1, and some, critically, can hit the Air-Material 2 interface.
Just like what happens at the Air-Material 1 interface, some of the photons will eventually
emerge from Material 2. These photons essentially survive the absorption of all the parti-
cles in the media. When you observe the material from opposite side of the illumination,
it is these transmitted photons that dictates the color of the material.

Sometimes people will also say “sub-surface scattering is caused by photons exiting at a point
different from the incident point.” It points to the fact that a photon can re-emerge anywhere
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from the material after SSS, whereas surface scattering is modeled to be taking place only at
the incident point (although we will see later that this is just a useful macroscopic abstraction
or, rather, modeling strategy).

6.2 Transparent vs. Opaque vs. Translucent Materials

We often hear materials being described as opaque, translucent, and transparent. We can now
more scientifically approach these terms given the intuitions we have built so far.

Transparent Materials

Transparent materials either scatter lights predominately in forward directions or they scatter
very little lights (other than surface scattering). Either way, most photons traveling through
the material are either absorbed or go through without changing much of their the directions.
So if you hold a transparent material against a light source, you can clearly see through the
material and see the light on the other side. This does not mean transparent materials always
have the same color as the light source — absorption could be wavelength-selective. An example
is aqueous/dye solutions where dye molecules are very small (∼ nm range) and, thus, scatter
little lights so they look transparent, but depending on the absorption spectrum (which depend
on how the dye molecules interact with molecules in the solvent), most dye solutions are not
colorless.

Opaque Materials

In many materials, photons arriving at the material surface are either reflected back right away
at the surface or, for those that do penetrate into the materials, are all absorbed by the sub-
surface particles. Examples include conductors like metals, whose subsurface absorption is very
strong, or sufficiently thick dielectrics. These materials are opaque in two senses. First, their
transmittance is practically 0. Because of strong absorption, no photon re-emerges at the other
side of the material. If you hold a, say, brick (dielectric) against a light bulb, the brick would
completely block the light. Second, their reflectance is independent of the substrate or the ma-
terial beneath them, so they completely hide the color of the substrate11. Painters know that if
they want to cover a layer in their painting, they will need to apply a very thick layer of paint
on top.

Translucent Materials

Translucent materials such as jade, wax, and human skin are neither opaque nor transparent.
If you hold a wax against a light bulb, the wax will not completely block the light so you will see
some light, but you will not be able to see clearly the other side through the wax, since photons
from the light bulb are very much volume-scattered after passing through the wax. Clearly

11Technically speaking having a zero transmittance requires the material to have a stronger absorption than
hiding the substrate, because in the latter case photons have to make a round trip so have more opportunities to
be absorbed.
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modeling SSS is critical for accurately estimating the color of translucent materials. In fact, in
graphics literature we sometimes see things like “modeling translucent material must consider
sub-surface scattering.” In this sense, we might be tempted to classify participating media as
translucent materials, because their colors certainly very much depend on volume scattering.
While it is technically correct, people rarely do that, perhaps just because of the weirdness of
calling say, smokes, a material rather than a medium?

It is not true that SSS is important only in modeling translucency. Modeling SSS can be
important for opaque materials. Consider the wax case: what if we make the wax very thick?
The thick wax will eventually become opaque in that it will completely hide the material behind
it. But that does not mean volume scattering does not matter here; the back-scattered photons
do contribute to the apparent color of a thick wax.

Oil Painting Example

To put things together, consider a painting. One way paintings are characterized is by how they
were painted, and we might see things like “oil on canvas”. Oil means the paint is oil paint,
where paint pigments are dispersed into (usually linseed) oil, which is usually called the binder
or the vehicle. Canvas is the substrate, which is nothing more than another material, that is
right beneath the painting.

The oil itself is somewhat transparent especially when you just apply a thin layer on the
canvas. But with the paint pigments, the entire oil paint becomes a translucent material. When
photons leave the oil paints, they immediately interact with the canvas. If the paint layer is
thick enough, virtually no photon can ever reach the canvas. But if the paint is relatively thin,
the property of the substrate will contribute to the overall color of the paint. For instance, if
the canvas is white-ish, a good percentage of the photons will be reflected back. The same paint
would look much darker if the canvas is black, which absorbs a lot of photons.

6.3 Equilibrium

We can view the light-material interaction as a dynamical system under an equilibrium. To
appreciate this, consider again Figure 9. Some photons entering Material 1 are back-scattered
and hit the Air-Material 1 interface and some of those photons will re-enter Material 1 through
internal reflection. Those photons will then go through multiple scattering, and as a result
some will be back-scattered again and hit the Air-Material 1 interface. The cycle goes on. The
secondary back-scattering is weaker in power than the first back-scattering, and the third-order
back-scattering is even weaker, and so on. So eventually you can imagine that the total number
of photons back-scattered at the surface will reach a constant.

In fact, this sort of dynamics takes place everywhere inside the material along every direction.
If you pick a point p in the material (or at the surface) and a direction ω starting at the point,
the radiance at (p, ω) is a constant under equilibrium. In other words, the spatial radiance
distribution (a.k.a., the light field) is not changing over time.

The equilibrium is reached almost instantaneously, since lights propagate incredibly fast. So
the equilibrium discussion is probably of no practical impact in modeling or actual measure-
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Figure 10: Conceptual model to help reason about photon absorption; see text. Adapted from
Max [1995, Fig. 1].

ment, but it is still important to keep this in mind. The (spectral) reflectance/BRDF model-
ing/measurement is done assuming equilibrium, and later when we model volume scattering we
will set up the differential equations under the equilibrium assumption, too.

7 Absorption

We will focus on modeling absorption in this chapter, and the way we build the models is
fundamental to how scattering will be dealt with later.

7.1 A Simple Case: Collimated Illumination on Uniform Medium

Imagine that a beam of light hits a volume of particles. The light is collimated in that all
photons travel along the same direction. We take a slice of the material perpendicular to the
incident direction. The slice is so thin that no particles in that material cover each other from
the direction of the incident light. This is shown in Figure 10 (left). We also for now assume
that the medium is uniform in that the number concentration c (i.e., the number of particles
per unit volume) of each slice is exactly the same.

Say the slice has a depth of ∆s and a geometrical cross-sectional area of E. All the particles
have the same geometrical cross-sectional area of εg. In the simplest model a photon is absorbed
whenever it hits a particle. In reality, the chance of absorption can be higher or lower. The
effective area available for absorption is

ε = εgQa, (39)

where Qa is called the absorption efficiency and is usually smaller than 1 for molecules
(which have small εg) and greater than 1 for large particles (whose εg can be large). Qa is
wavelength dependent so we should have written it as Qa(λ), but we will omit the wavelength in
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our notations for simplicity’s sake. In physics, ε is called the absorption cross section of the
particle; it characterizes the intrinsic capability of a particle to absorb photons. Mind the subtle
but important difference between the geometrical cross-sectional area and the cross section of a
particle.

The question we are interested in is, if the incident radiance is L, what is the radiance leaving
the slice L + ∆L? By convention, the difference between the exitant and incident radiance is
always ∆L, which in this case has to be negative. The percentage of photons that are absorbed
by this slice of particles (−∆L

L ) is equivalent to the cross-sectional area of the slice that is covered
by the total cross sections of the particles:

−∆L

L
=
cE∆sε

E
, (40a)

∆L

∆s
= −cεL = −σaL, (40b)

where c is the particle concentration of the slice, and E∆s is total volume of the slice. So
cE∆s is the number of particles in this thin slice, and cE∆sε is the total cross section of all
the particles. Given the assumption that no particle is covering each other, cE∆lε

E is then the
percentage of the thin slice’s cross-sectional area that is available for photon absorption and,
thus, the percentage of the incident photons that are absorbed. The negative sign on the left-
hand side of Equation 40a signals the fact that ∆L is negative.

We re-write Equation 40a as Equation 40b, which shows that the amount of photon absorp-
tion per unit length (∆L

∆s ) is proportional to the current amount of photons up to a scaling factor
cε. In the computer graphics literature, cε is called the absorption coefficient, denoted σa.

When ∆s approaches infinity, we can re-write Equation 40b as a differential equation in
Equation 41a. This equation is a classic case of exponential decay, and its solution is given by
Equation 41b, which allows us to calculate the remaining radiance after the light travels a length
s:

dL

ds
= lim

∆s→0

∆L

∆s
= −σaL, (41a)

L(s) = L0e
−σas, (41b)

where L0 = L(0) is the initial radiance of the light before interacting with the particles, as
visualized in Figure 10 (right), L(s) denotes the radiance at a particular length s.

Equation 41b is called the Bouguer-Beer-Lambert’s law (BBL), which is a geometrical
optics’ simplification of the electromagnetic theory of light-matter interaction where the matter
is purely absorptive [Mayerhöfer et al., 2020].

Absorption Coefficient

The absorption coefficient is an important measure of the medium’s ability to absorb photons.
It has a unit m−1, which means it is not bound by 0 and 1. One way to interpret the absorption
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coefficient is to observe that σads = dL/L, which is the fraction of the radiance absorbed or the
probability of light absorption by an infinitesimal slice. So σa = (dL/L)/ds can be interpreted as
the probability density of photon absorption, i.e., the probability of absorption per unit length
traveled:

σa = lim
∆s→0

∆L

L
/∆s =

dL

Lds
. (42)

Like any density measure, absorption coefficient is most useful when it is integrated: when
we integrate σa over the length that light travels, we get the fraction/percentage of the light
absorbed. One can also show that 1/σa is the expected value of the distance a photon can travel
before being absorbed [Bohren and Clothiaux, 2006, Chpt. 5.1.3]; this quantity is given the
name mean free path (l). To derive l, observer that the probability that a photon is absorbed
after traveling a distance s is 1 − e−σas. So the probability density of absorption as a function
of the distance s is:

f(s) =
d(1− e−σas)

ds
= σae

−σas. (43)

So the expected value of s, which we can interpret as the distance a photon can travel on
average before being absorbed, is:

l =

∫ ∞

0
sf(s)ds = 1/σa. (44)

An Alternative Derivation

An equivalent way of deriving the BBL law is the following. We divide the entire volume (with a
total length of s) into N thin slices, each with a length of ∆s. After the first slice, the surviving
portion of the initial radiance is L = L0(1− σa∆s), so after going through all the N slices, the
remaining radiance is given by Equation 45a:

LN = L0(1− σa∆s)N = L0(1− σa
s

N
)N , (45a)

L(s) = lim
N→∞

L0(1− σa
s

N
)N = L0e

−σas. (45b)

Now when ds becomes infinitesimal small, N approaches infinity, so the limit of the remaining
radiance as a function of the total length s is given in Equation 45b, which is the same as
Equation 41b.
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7.2 A Few Important Quantities

We can now define a few other commonly used quantities (omitting the wavelength dependence
for simplicity). The transmittance T of a volume with a total thickness of s is defined as the
percentage of the transmitted/unabsorbed photons after traveling the length of s (Equation 46a).
The absorbance A is the product of σas. The absorptance a of a volume is defined as the
percentage of the absorbed photons by the volume, which relates to T and A by Equation 46b.

T =
L(s)

L0
= e−σas, (46a)

A = − lnT = ln
L(s)

L0
= σas, (46b)

a = 1− T = 1− e−A. (46c)

We have seen these definitions in the Photoreceptor Chapter, where we said that one very
nice thing about the absorbance A is that it is approximately equivalent to absorptance a when
A is small (which would be true when, e.g., the length s is very small, as is the case when
discussing how a photoreceptor absorbs photons when illuminated transversely).

Another nice thing about absorbance is that absorbances add — because absorption coeffi-
cients add. Imagine you have n kinds of particles mixed up in a medium, each with a different
absorption coefficient σia, the overall absorbance of the medium is the sum of the individual
absorbance Ai derived as if the medium is made up of only one kind of particles. That is:

A =
n∑

i

Ai = s
n∑

i

σia = s
n∑

i

ciεi, (47)

where ci and εi are the concentration and absorption cross section of the ith particles. Specifically,
ci is defined as:

ci =
ni
V
, (48)

where ni is the number of the ith kind of particles in the material, and V is the material volume.
This is not a surprising result. As long as particles in a thin slice of this new heterogeneous

medium do not cover each other, we can easily extend Equation 40a and the rest of the derivation
to consider multiple kinds of particles; eventually Equation 47 would be a natural conclusion.
We will omit the derivation here for simplicity sake.

Equation 47 is a nice conclusion to have, because usually we are dealing with hybrid media.
For instance, a paint is a mixture of binder particles and pigment particles, and a mist is a
mixture of water droplets and air particles. If we do not want to model individual matters, we
can use a single absorption coefficient to describe the aggregate behavior of the mixture. That
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absorption coefficient does have a physical meaning: it is the concentration-weighted sum of the
individual absorption coefficients.

There are a bunch of other quantities defined in the literature. The state of the definitions
is a bit of a mess, largely because different communities use different definitions.

• In visual neuroscience people sometimes use a quantity called specific absorbance (see,
e.g., Bowmaker and Dartnall [1980]), which is the absorbance per unit length A

s . Whenever
you see a quantity that starts with the word “specific”, chances are that the quantity is
defined per unit length. You can see that specific absorbance is actually just our absorption
coefficient.

• In scientific communities especially chemistry and spectroscopy, people define ε, rather
than cε, to be the absorption coefficient. You can see the appeal of doing that — ε is a
more fundamental measure of a medium’s ability to absorb photons, independent of the
particle concentration c (and certainly independent of the traversal length s).

• The absorbance defined in Equation 46b is technically called the Naperian absorbance,
because we take the natural logarithm of T . Sometimes people also use the decadic
absorbance, which is defined as − log T . This quantity is also called the optical density.

• Finally, the number concentration c here is defined in terms of the absolute quantity per
unit volume, but sometimes people want to define c as the molar concentration, which
is the number of moles per unit volume. If so, all other derived quantities are then prefixed
with “molar”. Next time when you see something like the molar decadic absorption
coefficient, you know what it is!

The annoying thing is that people do not always tell you which definition they use. The plea
I have to you is to be specific about which definition you use in your writing and tell me when
I am being vague!

7.3 General Case

So far we have assumed that the absorption coefficient σa = cε is a constant regardless of the
position p in the medium and along any direction ω. The former property assumes that the
medium is uniform, and the latter property is called isotropic12 in that the medium’s ability
to absorb photons is independent of the light direction.

Both assumptions are problematic in practice. The concentration can change spatially and
should be denoted c(p), where p is an arbitrary position in space. ε can also change with p and,
more importantly, change with the direction of light incidence ω. For instance, the particles
might not be spherical so its geometrical cross-sectional area and, thus, the cross section ε

12“Isotropic” is a very overloaded term; it just means some physical property is invariant when measured
from different directions. So depending on what physical property you care about, “isotropic” can mean different
things. The property we care about here is a volume’s ability to absorb photons, which is different from our
earlier use of isotropy, which is concerned with the ability of a surface to scatter photons.
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Figure 11: A conceptual model to help reason about photon absorption in the general case,
where the absorption coefficient can vary spatially and directionally. The medium is divided
into many tiny elemental volumes, each of which is so small that particles do not cover each
from any direction.

available for absorbing photons can depend on ω. As a result, the absorption coefficient should
generally be denoted σa(p, ω).

Effectively, our conceptual model, shown in Figure 11, has to be changed to one where the
entire body of particles is divided into many equally-sized volumes (with a length ∆s and an
area ∆A), each of which is so small that particles do not cover each other from any direction.
The radiance reduction per unit length in a small volume is then expressed as:

∆L(p, ω)

∆s
= −σa(p, ω)L. (49)

Given this model, we can calculate the exitant radiance after light travels a length s through
the medium:

L(p+ sω, ω) = L(p, ω)e−
∫ s
0 σa(p+tω,ω)dt, (50)

where ω is the (unit) direction of the incident radiance, L(p, ω) is the incident radiance, L(p+
sω, ω) is the exitance radiance (radiance toward ω leaving the entire medium after traveling s).

You would notice that for a beam with an oblique incident direction, the distance traveled,
say ∆s′, can be different (longer or shorter than) from ∆s. Our model can account for this
by folding the factor ∆s′/∆s specific to a particular direction ω′ into the absorption coefficient
σa(p, ω

′). Note that the ∆s′/∆s factor should be the average for all the incident photons with
the same direction ω′ across the entire ∆A.

7.4 Nature and Applicability of the Model

The absorption model (the BBL law) derived before (Equation 41b and Equation 50) is a
continuous one, but it is derived based on modeling discrete particles and events. It is another
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example of the modeling methodology discussed on p. 26.
Equation 50 seems to suggest that absorption coefficient σa(p, ω) is continuously defined at

any position p in the medium along any direction ω. It is not true. For starters, concentration
c is not continuous. Rather, it exhibits the triphasic profile shown in Figure 6. As we keep
shrinking the size of the volume to the molecular scale, eventually the concentration depends on
whether the tiny volume contains any molecules or not, so it becomes wildly discontinuous, not
to mention the headache of dealing with a partial molecule in a volume — should it be counted
or not? In general the absorption coefficient can be an arbitrary discontinuous function that is
not integrable.

What about Equation 41b where the absorption coefficient is uniform so we do not have to
take the integral? Well, that is a lie too: concentration is not continuous, so it cannot be uniform
everywhere and, by extension, the absorption coefficient cannot be a constant everywhere either.
So Equation 41a is technically wrong when we let ∆s→ 0 (i.e., N →∞), which is necessary for
us to construct the differential equation (or take the limit in Equation 45b). For Equation 41a
to be true, the concentration/absorption coefficient must be a constant everywhere, which can
be true only if the volume is continuous.

What has to happen is that the limit of ∆s cannot be literally 0 and the limit of N cannot
be infinity. What we do is to keep reducing ∆s to the point where the concentration (and thus
absorption coefficient) is insensitive to slight perturbation of ∆s (i.e., operating in the stable
range in Figure 6), and call it the concentration/absorption coefficient of that specific ∆s. And
we repeat this for all the ∆s. This certainly applies to the general-case models in Equation 49
and Equation 50, where we iterate over not the thin slices ∆s but all the tiny volumes (∆A×∆s).
So all the integral symbols are secretly summing over an extremely fine-grained grid.

How big of an error are we introducing here? Technically, we should sum all N slices across
the total traversal length s in Equation 45a. If we assume ∆s to be very small (even thought not
infinitesimal) compared to s, N would be large, so taking the integration (equivalent to letting
N →∞) would be very close to summing over N . Similarly, the integral in Equation 50 should
have been a summation of the concentration in each of the N slices. If you want to be pedantic,
however, the integration there is exact: we can model c as a piece-wise function, where the value
at each piece is the concentration of the corresponding volume. Integrating over a piece-wise
function is the same as summing all the pieces. Only the exponential expression in Equation 50
is inexact.

The discontinuity of the medium is of course orthogonal to the discontinuity and non-
uniformity in the light field itself. For instance, the fact that we use cE∆lε

E as the percentage of
photon absorption in Equation 40a (and implicitly in Equation 41b) assumes that the irradiance
of the incident illumination is continuous and uniform in the small volume. This is technically
not true because photons are discrete packets of energy. But in practice this is not a concern
because we can assume that there is an enormous amount of photons incident on the small
volume and these photons are randomly distributed.

In essence, we are using the aggregated behavior of a large number of photons to model
the behavior of a small volume. This is similar to the microfacet models, where we use the
aggregated behavior of a large number of microfacets to statistically model the behavior of a
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Glow

Haze

Figure 12: Left: The atmospheric scattering of the sand coming from the Sahara during
Harmattan glows the sun and gives a hazy view of the remote mountains. Nigeria’s National
Mosque is in the foreground; from Kipp Jones [2005]. Right: illustrations of the glow of the sun
and the haze. Both are due to scattering and the difference is purely visual but not fundamental.

small macro-surface.
This sort of modeling strategy is a weird case where the discrete model provides the “ground

truth”, which is approximated by a continuous model. I say ground truth — that is to the extent
that the geometrical optics can approximate the electromagnetic theory of light-matter interac-
tion. The BBL law fails when the wave nature of photons have to be considered [Mayerhöfer
et al., 2020].

8 Scattering

Scattering is much more difficult to reason about than absorption, primarily because a scattered
photon is not “dead” and continues to participate in light-matter interaction. The way to study
scattering is to first understand the behavior of a single scattering event and then consider the
overall behavior of a large of collection of particles.

This chapter focuses on discussing a single scattering event (Chapter 8.2), and the next
chapter discusses the general case where a large collection of particles interact with photons.
Before all these though, it is useful to first build some intuitions as to why there is a distinction
between a single scattering event and scattering by a particle collection and explicitly lay out
the assumptions made for the rest of our discussions (Chapter 8.1).

8.1 Scattering by a Particle vs. a Collection of Particles

In geometric optics terms, scattering can be thought of as an event that takes place between a
photon and a particle. In the real world, however, objects and media are usually made of a large
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collection of particles, which introduces two complications: multiple scattering and interference.

Multiple Scattering

First, it is possible that a scattered photon, after traveling a certain distance, meets another
particle and gets scattered again. This makes it considerably more difficult to analyze the effect
of scattering by a medium than does the scattering of a single particle.

Look at Figure 12 (left) taken during Harmattan, where the atmosphere is full of sands and
dusts blown from the Sahara. The large collection of particles in the atmosphere scatter lights,
glowing the sun and giving the remote mountains a hazy view. The right panel illustrates the
scattering events that give rise to the glow and the haze.

Without scattering, sun lights enter the eye directly. With scattering, some photons from
the sun first knocked out of the view and could potentially be then scattered again back to
the eye. Some photons that enter the eye might even come from nearby objects other than the
sun. The scattering creates a glow around the sun and, for the observer, the sun appears larger
than it actually is. The hazy view of the mountains is created by exactly the same scattering
processes. The photons enter the eyes are mixed up from different parts of the mountains and
from other objects. The mountains appear hazy rather than glowing as the sun does simply
because the sun has a higher brightness contrast against the background than does a region
on the mountain. So the distinction between “glow” and “haze” is nothing more than a visual
difference at a superficial level rather than anything deeper in physics.

You can see why multiple scattering by large collections of particles poses challenges to our
analysis. If a photon is scattered once in the medium, the only effect of scattering would be to
knock photons out of our line of sight and, thus, remote objects would only look dimmer rather
than hazy. In this case, scattering would function exactly like absorption, for modeling purpose
at least. With multiple scattering, we have to track not only photons that are scattered out
but also photons that are scattered into the rays that enter our eyes13. This is a daunting task
considering that we are usually dealing with millions of particles and billions of photons, if not
more.

If you want to be absolute pedantic, we can distinguish the following cases:

1. a single scattering event, where a photon meets a particle and is scattered away;

2. single scattering, where a photon is scattered once by a medium (a large collection of
photons), which is under

(a) a collimated illumination, so the radiance of a ray can only be weakened because
photons are scattered to other directions,

(b) an arbitrary illumination, so the radiance of a ray can be both weakened and aug-
mented (by photons scattered from other directions);

13Technically photons from other objects can enter our eye through a single-scattering event; see the discussion
at the end.
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3. multiple scattering, where a photon is scattered multiple times by a medium, so the radi-
ance of a ray can both be weakened and augmented.

Chapter 8.2 studies Case 1 and Case 2(a) together, because the latter is the statistical
consequence of the former. Chapter 9 studies Case 2(b) and Case 3 together, because they have
the same observable effects and, thus, are modeled in the same way.

Interference and Coherence

Second, when there is a large collection of particles, the scattered radiation fields of individual
particles can interfere with each other. The exact impact of interference can only be calculated
by considering the wave nature of the light. But to the first order, the inference depends on how
densely packed the particles are.

In fact, the specular surface scattering we discussed in Chapter 4.4 is just a macroscopic
approximation of the microscopic volume scattering where particles interfere non-randomly. In
a mirror or a glass of water, the particles/molecules are very densely packed to the point that
the distance between two particles is smaller than the wavelength of the light. As a result, the
scattering is coherent, which gives rises to the illusion of a specular surface. One can show that
the Fresnel equations are the solution to the Maxwell’s equations when surface particles are
densely packed.

Why would the particle density matter? If particles are very close to each other, their
radiation fields are close too, so the interference is stronger and cannot be ignored. More
importantly, when particles are close to each other, their spatial positions can no longer be
treated as random, so the interference can become coherent. Imagine you drop particles into
a vast empty space; the particle sizes are much smaller relative to the space so their spatial
distribution can be roughly described as random. But if the particles are very densely packed,
where the next particle can be is very much restrained, so their positions are highly correlated,
leading to coherent scattering.

We will generally assume incoherent scattering unless otherwise noted, where individual
scattering events interfere each other in random ways, so we are spared of the complication of
thinking of the wave nature of the photons. Under this assumption, the total power scattered
by a collection of particles is the same as the sum of the power scattered by the individual
particles. This happens when the particles are sufficient sufficiently distant (separated by more
than multiple wavelengths) and their spatial arrangements are uncorrelated.

8.2 A Single Scattering Event

Scattering Efficiency and Coefficient

Intuitively, scattering has a similar effect as absorption: it weakens the radiance by taking
photons away from a beam of light. The difference is that scattered photons are not dead; they
are re-directed to other directions. We can define two important quantities, one to characterize
a particle’s ability to scatter photons and the other to characterize a medium’s ability to scatter
photons.
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Similar to the situation in absorption, the intrinsic capability of a particle to scatter photons
is defined by the particle’s scattering cross section εs, which itself is the product of the
geometrical cross-sectional area of the particle εg and the scattering efficiency Qs. We can
then define the scattering coefficient σs of a medium (a large collection of particles), which
characterizes the ability of the medium to scatter photons away from its incident radiance.
σs is the product of the particle concentration of the medium c and the particle’s scattering
cross section εs. Again, σs has a unit m−1 and is not bound by 0 and 1; it is best interpreted
as the probability density (i.e., probability per unit length) of light being scattered away. Of
course both the scattering efficiency and scattering coefficient can vary spatially, angularly, and
spectrally.

The effects of scattering and absorption add up, because they both weaken a radiance.
We can extend Equation 50 to consider scattering (again omitting the wavelength from the
equations):

L(p+ sω, ω) = L(p, ω)e−
∫ s
0 (σa(p+tω,ω)+σs(p+tω,ω))dt, (51a)

T (p→ p+ sω) =
L(p+ sω, ω)

L(p, ω)
= e−

∫ s
0 (σa(p+tω,ω)+σs(p+tω,ω))dt, (51b)

where σs(p, ω) is the scattering coefficient at p toward the direction ω, and T (p → p + sω) is
defined as the transmittance between p and p+ sω along the direction ω.

Equation 51a can be derived using the same idea as that used for deriving the absorption
equation in Chapter 7.1 by modeling a thin layer ∆x — with an additional assumption that ∆x
is so thin that a photon is scattered at most once before leaving ∆x. Therefore, scattering by a
single particle has the same effect of absorption: they both take the photon out of the radiance
and that is why the absorption equation (Equation 50) can be directly extended here.

Think of the applicability of Equation 51a: it says that the radiance of a ray can only be
weakened. If the incident light has only one direction (e.g., a collimated beam), Equation 51a is
true when a photon is scattered at most once in the medium. This is because a scattered photon
will not have a chance to get back to the ray. If the incident light is not monodirectional, e.g.,
diffuse illumination, Equation 51a in general does not apply — even if we consider only single
scattering. This is because photons originally not along the direction ω can be scattered toward
it through just one single scattering event. We can see how limited Equation 51a is: it applies
only when the illumination is collimated and we assume only single scattering. We will relax
this constraint later.

Just like the absorption case (Equation 47), if a medium is mixed with different particle,
each with a different scattering coefficients, the overall scattering coefficient is the sum of the
individual scattering coefficients as if the medium is made up of a particular kind of particles.

The sum of the scattering coefficient and absorption coefficient is called the extinction
coefficient or attenuation coefficient, denoted σt(p, ω):

σt(p, ω) = σa(p, ω) + σs(p, ω). (52)
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The ratio between the scattering coefficient and the attenuation coefficient is called the
single-scattering albedo of the medium:

ρ =
σs(p, ω)

σt(p, ω)
. (53)

This albedo can be seen as the volumetric counterpart of the surface albedo discussed in
Equation 19. The two forms of albedo have the same physical meaning: the fraction of the
incident energy that is scattered away (i.e., not absorbed). A dark medium (e.g., smoke) has a
lower albedo and a bright medium (e.g., mist) has a higher albedo.

The sum of the scattering and absorption cross sections is called the extinction cross
section or attenuation cross section, denoted εt = εa + εs. And of course 1/σt is the mean
free path in a medium where both absorption and scattering take place, i.e., the mean distance
a photon can travel without being absorbed or scattered away.

Scattering Direction Distribution: Phase Function

While the scattering efficiency (coefficient) characterizes how well a particle (medium) is able to
scatter photons, it tells us nothing about the direction of scattering. The direction of a single
scattering event is characterized by the phase function fp(p, ωs, ωi), which can be interpreted
as the probability density function that a photon incident from a direction ωi is scattered toward
a direction ωs. We will omit p and write the phase function as fp(ωs, ωi) when the discussion is
unconcerned of p.

fp(ωs, ωi) is defined as the fraction of the irradiance incident from an infinitesimal solid angle
dωi that is scattered toward an infinitesimal solid angle dωs per unit solid angle:

fp(ωs, ωi) = lim
∆ωs→0

lim
∆ωi→0

∆Eo(ωs)

∆Ei(ωi)
/∆ωs =

d2Eo(ωs)

dEi(ωi)dωs
=

d2Eo(ωs)

L(ωi)dωidωs
. (54)

∆Ei(ωi) is the incident irradiance over a small solid angle ∆ωi and scatters in all directions.

∆Eo(ωi) is the outgoing irradiance over a small solid angle ∆ωs, so ∆Eo(ωs)
∆Ei(ωi)

is the fraction of the
photons incident from ∆ωi that are scattered over ∆ωs or, alternatively, the probability that a
photon incident from ∆ωi is scattered toward ∆ωs; this ratio/fraction is clearly a value between
0 and 1. Dividing that fraction by ∆ωs gets us the probability per unit solid angle. When both
the incident solid angle ∆ωi and the outgoing solid angle ∆ωs approach 0, the fraction can be
interpreted as the directional-directional reflectance (Chapter 4.2), and the probability per solid
angle within ∆ωs becomes the probability density toward ωs.

Like all density functions, the meaning of a phase function is most clear when it is integrated
to compute some other quantity. Integrating Equation 54 over all the outgoing directions ωs:
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dEo =

∫ Ω=4π

fp(ωs, ωi)L(ωi)dωidωs (55a)

= L(ωi)dωi

∫ Ω=4π

fp(ωs, ωi)dωs (55b)

= dEi

∫ Ω=4π

fp(ωs, ωi)dωs. (55c)

To interpret this integration, consider a point that receives an incident radiance of L(ωi)
over an infinitesimal solid angle dωi. The point receives a total irradiance of dEi = L(ωi)dωi,
which is scattered in all directions. The density of the irradiance scattered toward a particular
direction ωs is fp(ωs, ωi)L(ωi)dωi

14, which when multiplied by dωs gives us the actual irradiance
scattered over a small solid angle dωs around ωs. Integrating all outgoing directions over the
entire sphere (4π) we have Equation 55a.

Now, of course some of the photons in dEi might not be scattered; they could be absorbed
or they could simply not hit the cross section of any particle. So technically dEo ≤ dEi in Equa-
tion 55c, just like how energy conservation is expressed in surface scattering in Equation 16b. By
the convention in the volume scattering literature, however, the phase function is defined such
that dEi refers to only the portion of the incident irradiance that does get scattered. Therefore,
dEo = dEi and, thus, we have:

∫ Ω=4π

fp(ωs, ωi)dωs =

∫ Ω=4π

fp(ωs, ωi)dωi = 1. (56)

That is, the phase function integrates to 1; the second integral can be derived using the
Helmholtz reciprocity (since we are still dealing with geometrical optics):

fp(ωi, ωs) = fp(ωs, ωi). (57)

One way to interpret the fact that the phase function integrates to 1 is that the phase
function is the conditional probability density function of scattering: given that a photon is
scattered what is the probability (density) of scattering to a particular direction?

Phase Function vs. BRDF

The phase function can be seen as the volumetric counterpart (in the sense that we are talking
about volume scattering) of BRDF (Equation 4.1) — with two differences. First, the definition of
the BRDF accounts for absorption, so the BRDF integrates to at most 1, whereas the integral of
the phase function is normalized to 1. This difference in definition is born purely of convention.

14A direction ωs has a solid angle of 0, so its associated irradiance is technically 0, too. What fp(ωs, ωi)L(ωi)dωi
represents is the irradiance per solid angle.
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The second difference is more fundamental. There is no cos θ term when using the phase
function; see, e.g., Equation 55, unlike how the BRDF is used to turn irradiance into radiance
(e.g., Equation 16b). In fact, from Equation 55 we can see that given a radiance L(ωi) and a
solid angle dωi, the irradiance is simply L(ωi)dωi rather than L(ωi) cos θidωi. Didn’t we say
that there is a cosine fall-off between radiance and irradiance (Chapter 3.4)?

One intuition that might help is that in volume scattering we are dealing with points, which
can receive flux from the entire sphere and have no definition of a normal (because points are di-
mensionless and shapeless) or, perhaps more conveniently, have a “flexible” normal that changes
with the illumination direction and is always facing directly at the illumination. Entertain this
thought experiment. We set up a small surface detector at a point and measure the power of
the detector; if the incident light is parallel to the surface, the detector would receive no power,
but would you say that the point does not receive any light and that the radiation field has no
power? Of course not.

The fact that a parallel surface would receive no photon absolutely does not mean the
illumination has no power; the radiation field is the same whether it is illuminating a surface
or illuminating a point. But if we are modeling a surface, we want our model to say that the
power received by the surface is 0, because it matches our phenomenological observation (that
a detector arranged that way would receive no recording); when we are modeling a point in
volume scattering, we want the point to receive a power as if the point has a “normal” that is
directly facing the illumination because, again, this matches our phenomenological observation.

Ultimately, the difference is a conscious choice of modeling strategy even though the under-
lying physics is exactly the same. That is why models based on BRDF and phase function are
phenomenological models. If you deal with electromagnetic theories and QED, you would not
have to have this distinction between modeling surface and volume scattering.

With the understanding that there is no cosine fall-off in volume scattering, Equation 54 can
be re-written as:

fp(ωs, ωi) =
d2Eo(ωs)

dEi(ωi)dωs
=

d

dEi(ωi)

dEo(ωs)

dωs
=

dLo(ωs)

dEi(ωi)
=

dLo(ωs)

Li(ωi)dωi
, (58)

where dLo(ωs) is the infinitesimal outgoing radiance toward ωs. In this sense, the phase function
operates in exactly the same way as the BRDF (Equation 37a): they both operate on irradiance
and turn infinitesimal irradiance to infinitesimal radiance.

Isotropic Medium and Isotropic Scatters

Given the normalization in the phase function, the scattering efficiency should actually be pa-
rameterized as Q̄s(p, ωs, ωi):

Q̄s(p, ωs, ωi) = Qs(p, ωi)fp(p, ωs, ωi), (59)
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Figure 13: The phase function of a spherical particle is 1) invariant to the incident direction
ωi, which, without losing generality, is taken to be the z-axis here, and 2) also invariant to
the azimuthal angle φ of the outgoing direction ωs but depends on the polar angle θ. So
fp(ωs, ωi) = fp(ωs

′, ωi) 6= fp(ωs
′′, ωi). Media consisting of such particles are called isotropic

media, but it does not mean the particle itself is an isotropic scatterer, which does not exist but
if it did its phase function would be a constant (invariant to both θ and φ).

where Qs(p, ωi) should be be interpreted as the total scattering efficiency at p over all outgo-
ing directions for a given incident direction ωi. Similarly, the scattering coefficient would be
expressed as:

σ̄s(p, ωs, ωi) = σs(p, ωi)fp(p, ωs, ωi), (60)

where σs(p, ωi) is interpreted as the total scattering coefficient at p over all outgoing directions
for a given incident direction ωi.

Figure 14 visualizes a few common phase functions. An implicit assumption made in these
visualizations is that while fp(·) is technically a 4D function parameterized by ωs and ωi, the
phase function of many natural media is 1D and depends only on the angle θ subtended by ωs
and ωi. Consider under what conditions can this simplification be true.

• First, it says that the phase function does not depend on the absolute incident direction
ωi but the relative angle between ωi and ωs. To get a visual intuition, see Figure 13; if the
phase function is invariant to the photon incident direction ωi, we can, without losing any
generality, assign ωi to the z-axis; the scattered direction ωs is parameterized by θ and φ.

• Second, it also says the phase function depends on only θ but not φ. That is, the phase func-
tion is rotational symmetric about the incident direction ωi. So fp(ωs, ωi) = fp(ωs

′, ωi) 6=
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PHASE FUNCTION
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Figure 14: Visualizations of common phase functions; adapted from Novák et al. [2018], where
ω is the incident direction ωi and ω̄ is the outgoing direction ωs in our notation. For an isotropic
medium, the phase function depends on only the angle θ subtended by ω and ω′ and is axially
symmetric about ω.

fp(ωs
′′, ωi).

Intuitively, the phase function has the following two properties:

• If you fix the incident direction, no matter how you rotate the particle, the phase function
distribution is the same. Alternatively, if you change the incident direction, the phase
function distribution moves along with the incident direction.

• Given an incident direction, the phase function distribution is axially symmetric about the
incident direction.

The two conditions above are met only when the medium consists of randomly distributed
spherically symmetric particles15, in which case 1) there is no reason to think that any incident
direction is special, so the phase function certainly is invariant to ωi, and 2) there is no reason to
think ωs and ωs

′ are any different since one should not expect the scattering behavior to change
if we rotate the sphere about the incident direction (z-axis).

A medium consisting of spherically symmetric particles is called a symmetric or an isotropic
medium, which is what Figure 14 assumes, where the distance of a point on the contour to
the center represents the magnitude of the phase function at that particular θ. Usually when
we refer to an isotropic medium, not only is the phase function rotationally invariant to the
incident direction, but also total scattering coefficient σs(p, ωi) (Equation 60), too16.

As we said earlier, “isotropic” is an unbelievably overloaded term. People also call a particle
an isotropic scatterer if its phase function is a constant, i.e., invariant to ωs; such a phase
function is sometimes called an isotropic phase function. An isotropic scatterer does not exist;
it is a purely theoretical construction and, if it existed, its phase function would take the value
of 1

4π given Equation 56, as shown in the first graph in Figure 14.

15or when the medium consists of randomly distributed and oriented spherically asymmetric particles, in which
case the medium is statistically spherically symmetric.

16In theory, it is certainly possible to have a medium whose total scattering coefficient/efficiency varies with
the incident direction but not the angular distribution/probability of the scattered photons.
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8.3 Common Models and General “Rules”

There are many factors that determine the exact scattering efficiency and scattering direction,
which can be calculated by solving the Maxwell’s equations. We will talk about a few common
models here; we focus on the intuitions while omitting the exact mathematical expressions,
which can be found in standard texts. From the models, we can identify a few general “rules”
or, rather, approximations under certain assumptions.

The main theory or model for a single scattering event is called the Mie scattering theory,
which, strictly speaking, applies only when the particle is spherical; see Sharma [2003, Chpt.
3.5.2], Bohren and Clothiaux [2006, Chpt 3.5], and Melbourne [2004, Chpt. 3]. Mie scattering
is not somehow a different scattering process from any other scattering, and the Mie theory is
nothing more than the solution to the Maxwell’s equations under certain conditions17.

The Mie theory predicts that the overall scattering efficiency Qs is:

Qs =
8

3
γ4
(m2 − 1

m2 + 2

)[
1 +

6

5

(m2 − 1

m2 + 2

)
γ2 + · · ·

]
, (61a)

γ =
r

λm
, (61b)

m =
n

nm
, (61c)

where m is the the relative refractive index between the particle and the medium surrounding
the particle, and γ is the ratio between the particle radius r and the incident light wavelength
in the surrounding medium λm.The notion of surrounding media might come across as a little
surprising: doesn’t the material consist merely of its particles? Hardly. For instance in paints,
pigments are surrounded by binders (e.g., linseed oil in oil paints, egg yolk in tempera paints,
and beeswax in encaustic paints) and usually some amount of water (except oil paints). When
paints dry, some water might be evaporated, leaving pockets of air, which also contributes to
the surrounding media.

We can draw a few general conclusions from the model.

Small-Particle (Rayleigh) Scattering

For small particles where γ � 1 (generally when the radius is ten times smaller than the
wavelength of the incident light), only the first term in Equation 61a’s bracket matters, so the
scattering efficiency is inversely proportional to λ−4

m . The inverse proportionality to λ−4
m largely

(but apparently not entirely) explains why sky is blue and why the sun is red [Bohren and
Clothiaux, 2006, Chpt. 8.1]. Why? First of all, recognize that individual molecules, such as
air molecules, are usually sub-nm in size so they scatter in this small-particle regime. Short
wavelength lights from the sun are scattered by the atmospheric molecules more toward the sky
and eventually enter your eyes, so if you look at the sky (against the sun) it would appear blue;

17The modern form of the solution is summarized, not invented, by Gustav Mie but the solution had been
developed by many predecessors such as Ludvig Lorenz.

55



8.3 Common Models and General “Rules” CSC 259/459 Lecture Notes

when you look at the sun directly, the photons entering your eyes are mostly those unscattered
ones that transmit directly through the atmosphere, and they are mostly longer-wavelength
photons.

By then water molecules are also similarly small, so why would water look so different from
the air? It is because water molecules are very densely packed so their scatterings are coherent.
In fact, the end result of such coherent scatterings by a collection of water molecules is that
water appears specular.

The photopigments in a photoreceptor are very small in size compared to the wavelengths
of visible lights (each rhodopsin has a cross-section area of about 10−2 nm2 [Milo and Phillips,
2015, p. 144]), so they almost do not scatter lights at all, only absorption. That is why we could
use microspectrophotometry (MSP) to measure a photoreceptor’s (transverse) absorption rate:
MSP measures the amount of light transmitted through a photoreceptor, and if there is little
scattering then all the photons that are not measured must be absorbed by the photoreceptor.

Scattering in the small-particle regime is also called Rayleigh scattering, which, again, is
not somehow a fundamentally different scattering process, and the Rayleigh scattering theory
(worked out by Lord Rayleigh, who won the Noble Prize in Physics in 1904) is nothing more
than a special case of the Mie scattering theory; see Sharma [2003, Chpt. 3.5.1] and Bohren and
Clothiaux [2006, Chpt. 3.2].

The phase function in the Rayleigh regime is proportional to 1 + cos2 θ, which looks like the
third graph shown in Figure 14, where backward and forward scatterings are roughly equally
probable. Taking the phase function into account, the scattering efficiency (in the form defined
in Equation 59) in Rayleigh scattering is proportional to:

Qs ∝ (
r

λm
)4m

2 − 1

m2 + 2
(1 + cos2 θ). (62)

Impact of Particle Size

When the particle size increases, the scattering efficiency increases, initially very quickly, but
eventually saturates. In fact, the Mie theory predicts that when the particle size is much larger
than the wavelength (e.g., more than 100 times larger), the scattering efficiency approaches a
constant 2 (regardless of m and λm). This is evident in Figure 15, which shows the scattering
efficiency of a kind of particle as a function of particle radius (x-axis) under different m (different
curves); the incident light wavelength is 500 nm.

The particle size also affects the phase function. As we have discussed above, small particles
in the Rayleigh regime tend to scatter photons equally in the forward and backward directions
while large particles primarily scatter photons in the forward directions. The last two graphs
in Figure 14 show the phase functions predicted by the Mie scattering theory under different
particle sizes (both are larger than that in the Rayleigh regime). The forward fraction increases
as the particle size increases.

Consider the scenario in Figure 9, where Material 1 sits on top of Material 2, and our goal
is to hide Material 2 so that the color of Material 1 is dependent only on the illumination (not
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Figure 15: Scattering efficiency as a function of particle radius under different relative refractive
index m; the incident light wavelength is 500 nm. From Johnsen [2012, Fig. 5.4].

the property of Material 2). There is an interesting trade-off between scattering efficiency and
scattering direction here. If we want Material 1 to hide Material 2, we want the particles in
Material 1 to scatter a lot of lights (high scattering efficiency) backwards. If the scattering
efficiency is low (so photons march on and are hindered only by absorption) or the scattering
is heavy in the forward directions, photons penetrate through Material 1 and reach Material 2,
which would then contribute to the overall color.

Now, to scatter a lot of lights, we need the particles to be large, but then the scattering
will be mostly in the forward directions. So there exists a sweet spot of the particle size that
provides the highest “hiding power” for a material per unit volume. If we work out the math,
we will see that the sweet spot falls roughly in the visible wavelength range. That is why most
paint pigments have a diameter between 100 nm and 1 µm [Bruce MacEvoy, 2015]. Of course,
no matter how poor the hiding power is for a particular paint, if you apply enough of it, it would
eventually hide whatever is behind it. Dye pigments are rather small in size (∼ nm range), so
they scatter little photons and that is why dye solutions look relatively transparent.

Impact of Refractive Index

Figure 15 also shows the impact of the relative refractive index m (between the particle and the
surrounding media) on scattering efficiency. Generally, the scattering efficiency increases with
m at all particle sizes until when the particles are so large that the scattering efficiency becomes
a constant. This is supported by Equation 61a, too (m

2−1
m2+2

monotonically increases and has a
limit of 1).

For large particles, whilem does not affect the scattering efficiency, it influences the scattering
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directions. When m is small, the scattering tends to be more forward whereas when m is large,
the scattering tends to be toward large angles (i.e., more photons will be back-scattered). This
is why wet objects look darker (recall the unpleasant experience of accidentally spilling water
on your pants). In dry paints the medium surrounding the textile particles is air and in wet
paints it is water. m becomes smaller when the material is wet (i.e., the relative refractive-index
difference becomes smaller between the textile particles and water), so most of the scattering
will be forward, increasing the traversal length of photons and essentially giving photons more
opportunities to be absorbed.

Aspherical Particles

What if the particle is not spherical? The Mie theory does not apply. Analytical or even
numerical solutions to the Maxwell’s equations would be difficult, so a perhaps better approach
is just to parameterize a model and fit it with the experimental data.

One popular one-parameter parameterization of the phase function is the Henyey–Greenstein
phase function; see [Pharr et al., 2018, Chpt. 11.3.1] and [Bohren and Clothiaux, 2006, Chpt.
6.3.2], which takes the form:

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
, (63)

where g is the free parameter and is usually called the asymmetry parameter.
We hasten to emphasize that the Henyey–Greenstein function has absolutely zero physical

meaning; it is designed for fitting experimental phase function data, so in modern deep learning
era you might as well try a deep neural network. The second graph in Figure 14 shows one
instantiation of the Henyey–Greenstein function.

9 Radiative Transfer Equation and Volume Rendering

So far we have assumed that a ray can only be attenuated, which can happen only when the
illumination is collimated and we assume single scattering. Under this assumption, Equation 51a
allows us to calculate any radiance in the medium (by weakening the initial radiance). General
media are much more complicated: illumination can be from anywhere and multiple scattering
must be accounted for. As a result, external photons can be scattered into a ray of interest, as
we have intuitively discussed in Chapter 8.1.

In the realm of geometric optics and radiometry, the general way to model lights going
through a material/medium amounts to solving the so-called Radiative Transfer Equation
(RTE), whose modern version was established by Chandrasekhar [1960], who won the Nobel
prize in physics in 1983 (not for the RTE). The RTE provides a mathematical way to express
an arbitrary radiance in a medium.
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9.1 Radiative Transfer Equation

The basic idea is to setup a differential equation to describe the (rate) of the radiance change.
Given an incident radiance L(p, ωs), we are interested in L(p+ ∆sωs, ωs), the radiance after the
ray has gone a small distance ∆s. The radiance can be:

• attenuated by the medium because of absorption;

• attenuated by the medium because photons are scattered out into other directions; this is
called out-scattering in graphics;

• augmented by photons that are scattered into the ray direction from all other directions
— because of multiple scattering18; this is called in-scattering in graphics;

• augmented because particles can emit photons.

The attenuation (reduction) of the radiance over ∆s is:

−L(p, ωs)σt(p, ωs)∆s. (64)

The radiance augmentation due to in-scattering is given by:

∫ Ω=4π

fp(p, ωs, ωi)σs(p, ωs)∆sL(ωi)dωi = σs(p, ωs)∆s

∫ Ω=4π

L(p, ωi)fp(p, ωs, ωi)dωi. (65)

The way to interpret Equation 68 is the following. L(p, ωi) is the incident radiance from
a direction ωi, L(p, ωi)dωi is the irradiance received from dωi, of which σs(p, ωi)∆sL(p, ωs)dωi
is the irradiance scattered in all directions after traveling a distance ∆s. That portion of the
scattered irradiance is multiplied by fp(ωs, ωi) to give us the radiance toward ωs (see Equa-
tion 58). We then integrate over the entire sphere, accounting for the fact that lights can come
from anywhere over the space, to obtain the total augmented radiance toward ωs.

If we consider emission, the total radiance augmentation is:

σa(p, ωs)∆sLe(p, ωs) + σs(p, ωs)∆s

∫ Ω=4π

L(p, ωi)fp(p, ωs, ωi),dωi. (66)

where Le(p, ωs) is the emitted radiance at p toward ωs so the first term represents the total
emission over ∆s. If we let:

Ls(p, ωs) = σa(p, ωs)Le(p, ωs) + σs(p, ωs)

∫ Ω=4π

L(p, ωi)fp(p, ωs, ωi)dωi, (67)

18Technically, even single scattering can lead to augmentation if there is illumination coming from anywhere
outside the ray direction.
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the total augmentation can be simplified to:

Ls(p, ωs)∆s, (68)

where the Ls term is sometimes called the source term or source function in computer
graphics, because it is the source of power at p19.

Combining Equation 64 and Equation 68, the net radiance change is20:

∆L(p, ωs) = L(p+ ∆sωs, ωs)− L(p, ωs) (69a)

= −L(p, ωs)σt(p, ωs)∆s+ Ls(p, ωs)∆s. (69b)

As ∆s approaches 0, we get (assuming ωs is a unit vector as in Equation 50 and Equa-
tion 51a):

ωs · ∇pL(p, ωs) =
dL(p, ωs)

ds
= lim

∆s→0

L(p+ ∆sωs, ωs)− L(p, ωs)

∆s

= −σt(p, ωs)L(p, ωs) + Ls(p, ωs), (70)

where ∇p denotes the gradient of L with respect to p, and ωs · ∇p denotes the directional
derivative, which is used because technically p and ωs are both defined in a three-dimensional
space, so what we are really calculating is the rate of radiance change at p along ωs.

Equation 70 is the RTE, which is an integro-differential equation, because it is a differential
equation with an integral embedded. The RTE has an intuitive interpretation: if we think of
radiance as the power of a ray, as a ray propagates its power is attenuated by the medium but
also augmented by “stray photons” from other rays. The latter is given by Ls(p, ωs), which can
be thought of as the augmentation of the radiance per unit length.

The RTE describes the rate of change of an arbitrary radiance L(p, ωs). But our ultimate
goal is to calculate the radiance itself? Generally the RTE has no analytical solution. There
are two strategies to solve it. First, we can derive analytical solutions under certain certain
assumptions and simplifications.

• For instance, the integral in Equation 70 can be approximated by a summation along N
directions; then we can turn Equation 70 into a system of N differential equations to be
solved. This is sometimes called the N-flux theory. We will see one such example in
Chapter 10 where N = 2.

19Some definitions do not include emission in the source term while in other definitions the source term is what
is defined here divided by σt.

20A subtlety you might have noticed is that not all the out-scattering of L(p, ωs) attenuates the radiance;
some of the scattering could be toward ωs so should augment the radiance. This is not a concern since our
augmentation term Equation 68 integrates over the entire sphere, so it considers L(p, ωs) again as part of in-
scattering and accounts for the forward-scattered portion of L(p, ωs).
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Figure 16: (a): Illustration of the continuous VRE (Equation 71). (b): Illustration of a discrete
VRE (Equation 73a), where the integral in the continuous VRE is replaced by a summation
between p0 and p at an interval of ∆s; ti is the total transmittance between pi and pi+1; Li is a
shorthand for Ls(pi, ωs), the source term of at pi toward ωs.

• Another assumption people make is to assume that volume scattering is isotropic and can
be approximated as a diffusion process. This is called the diffusion approximation [Ishi-
maru, 1977; Ishimaru et al., 1978], which is widely used in both scientific modeling [Farrell
et al., 1992; Eason et al., 1978; Schweiger et al., 1995; Boas et al., 2001] and in render-
ing [Stam, 1995; Jensen et al., 2001; Dong et al., 2013, Chpt. 7]; see Bohren and Clothiaux
[2006, Chpt. 6.2] for a theoretical treatment.

9.2 Volume Rendering Equation

The second approach, which is particularly popular in computer graphics, is to first turn the
RTE into a purely integral equation and then numerically (rather than analytically) estimate
the integral using Monte Carlo integration, very similar to how the rendering equation is dealt
with for surface scattering (Chapter 4.3).

The way to think of this is that in order to calculate any given radiance L(p, ωs), we need to
integrate all the changes along the direction ωs up until p. Where do we start the integration?
We can start anywhere. Figure 16(a) visualizes the integration process. Let’s say we want to
start from a point p0, whose initial radiance toward ωs is L0(p0, ωs). Let p = p0 + sωs, where ωs
is a unit vector and s is the distance between p0 and p. An arbitrary point p′ between p0 and p
would then be p′ = p0 + s′ωs

21.

21There are two alternative parameterizations, both of which are common in graphics literature. The
first [Pharr et al., 2023] is to express p0 = p + sωs (s being positive), but then the initial radiance would
have to be expressed as L(p0,−ωs), since ωs now points from p to p0. The other is to express p0 = p − sωs (s
again being positive) [Fong et al., 2017]; this avoids the need to switch directions but uses a negative sign. It is a
matter of taste which one to use, but be alert of the different conventions.
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Now we need to integrate from p0 to p by running s′ from 0 to s. Observe that the RTE is
a form of a non-homogeneous linear differential equation, whose solution is firmly established in
calculus. Without going through the derivations, its solution is:

L(p, ωs) = T (p0 → p)L0(p0, ωs) +

∫ s

0
T (p′ → p)Ls(p

′, ωs)ds
′, (71)

where T (p0 → p) is the transmittance between p0 and p along ωs, and T (p′ → p) is the trans-
mittance between p′ and p along ωs. Recall the definition of transmittance in Equation 51b: it
is the remaining fraction of the radiance after attenuation by the medium after traveling the
distance between two points. In our case here:

T (p′ → p) =
L(p+ sωs, ωs)

L(p+ s′ωs, ωs)
= e−

∫ s
s′ σt(p+tω,ω)dt, (72a)

T (p0 → p) =
L(p+ sωs, ωs)

L(p, ωs)
= e−

∫ s
0 σt(p+tω,ω)dt, (72b)

This integral equation in the graphics literature is called the volume rendering equation
(VRE) or the volumetric light transport equation — the counterpart of the surface LTE
(Chapter 4.3). Looking at the visualization in Figure 16(a), the VRE has an intuitive interpre-
tation: the radiance at p along ωs is the the contribution of p0 plus and contribution of every
single point between p0 and p.

• The contribution of p0 is given by its initial radiance L0 weakened by the transmittance
between p0 and p;

• Why would a point p′ between p0 and p make any contribution? It is because of the source
term (Equation 67): p′ might emit lights and and some of the in-scattered photons at p′

will be scattered toward ωs. The contribution of p′ is thus given by the source term Ls
weakened by the transmittance between p′ and p.

The form of the VRE might appear to suggest that it is enough to accumulate along only the
direct path between p0 and p, which is surprising given that there are infinitely many scattering
paths between p0 and p (due to multiple scattering). For instance, it appears that we consider
only the outgoing radiance toward ωs from p0, but p0 might have outgoing radiances over other
directions, which might eventually contribute to L(p, ωs) through multiple scattering. So are
not ignoring them?

The answer is that the VRE implicitly accounts for all the potential paths between p0 and
p — because of the Ls term, which expands to Equation 67. That is, every time we accumulate
the contribution of a point between p0 and p, we have to consider the in-scattering from all the
directions at that point. Another way to interpret this is to observe that the radiance term
L appears on both sides of the equation. Therefore, the VRE must be solved recursively by
evaluating it everywhere in space.
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Does this remind you of the rendering equation (Equation 23)? Indeed, the VRE can be
thought of as the volumetric counterpart of the rendering equation. Similarly, we can use Monte
Carlo integration to estimate it, just like how the rendering equation is dealt with — with an
extra complication: the VRE has two integrals, the outer integral runs from p0 to p and, for
any intermediate point p′, there is an inner integral that runs from p′ to p for evaluate the
transmittance T (p′ → p). Therefore, we have to sample both integrands.

Similar to the situation of the rendering equation, sampling recursively would exponentially
increase the number of rays to be tracked. Put it another way, since there are infinitely paths
from which a ray gains its energy due to multiple scattering, we have to integrate infinitely many
paths. Again, a common solution is path tracing, for which Pharr et al. [2023, Chpt. 14] is a
great reference.

A simplification that is commonly used is to assume that there is only single scattering
directly from the light source. In this way, the Ls term does not have to integrate infinitely
many incident rays over the sphere but only a fixed amount of rays emitted from the light source
non-recursively. This strategy is sometimes called local illumination in volume rendering, as
opposed to global illumination, where one needs to consider all the possible paths of light
transport. The distinction is similar to that in modeling surface scattering (Chapter 4.3).

9.3 Discrete VRE and Scientific Volume Visualization

Sometimes the VRE takes the following discrete form:

L =

N−1∑

i=0

(
Li∆s

N−1∏

j=i+1

tj
)

(73a)

=
N−1∑

i=0

(
Li∆s

N−1∏

j=i+1

(1− αj)
)

(73b)

= LN−1∆s+ LN−2∆s(1− αN−1) + LN−3∆s(1− αN−1)(1− αN−2) + · · ·

+ L1∆s

N−1∏

j=2

(1− αj) + L0∆s
N−1∏

j=1

(1− αj). (73c)

Equation 73a looks very much like Equation 71: the former turns the two integrals in the
latter, both the outer integral and the inner one carried by T (·), to discrete summations using the
Riemann sum over N discrete points along the ray between p0 and p at an interval of ∆s = s

N .
The notations are slightly different; Figure 16(b) visualizes how this discrete VRE is ex-

pressed with the new notations.

• L is L(p, ωs), the quantity to be calculated;

• Li is a shorthand for Ls(pi, ωs), i.e., thetsource term (Equation 67) for the ith point between
p0 and p toward ωs; by definition, p0 is the 0th point (so L0 is the initial radiance L0(p0, ωs)
in Equation 71) and p is the N th point;
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• ti represents the total transmittance between the ith and the (i + 1)th point and is given
by e−σt(pi,ωs)∆s (notice the integral in continuous transmittance Equation 51b is gone,
because we assume the transmittance between to adjacent points is a constant in the
Reimann sum);

• αi is the opacity between the ith and the (i+ 1)th point, which is defined as the residual
of the transmittance between the two points: 1− ti.

See Max [1995, Sect. 4] or Kaufman and Mueller [2003, Sect. 6.1] for a relatively straight-
forward derivation, but hopefully this form of the VRE is equally intuitive to interpret from
Figure 16(b). It is nothing more than accumulating the contribution of each point22 along the
ray, but now we also need to accumulate the attenuation along the way just because of how
opacity is defined by convention (per step), hence the product of a sequence of the opacity
residuals.

This way of computing the VRE is usually used in the scientific visualization literature,
where people are interested in visualizing data obtained from, e.g., computer tomography (CT)
scans or magnetic resonance imaging (MRI). There, it is the relative color that people usually
care about, not the physical quantity such as the radiance, so people sometimes lump Li∆s
together as Ci and call it the “color” of the ith point. The VRE is then written as:

C =
N−1∑

i=0

(
Ci

N−1∏

j=i+1

(1− αj)
)
. (74)

The C terms are defined in a three-dimensional RGB space, and Equation 74 is evaluated
for the three channels separately, similar to how Equation 73a and Equation 71 are meant to
be evaluated for each wavelength independently. Since color is a linear projection from the
spectral radiance, the so-calculated C (all three channels) is indeed proportional to the true
color, although in visualization one usually does not care about the true colors anyways (see
p. 66).

This formulation is also called the back-to-front compositing formula in volume rendering,
since it starts from p0, the farthest point on the ray to p. We can easily turn the order around
to start from p and end at p0 in a front-to-back fashion (CN−1 now corresponds to p0):

C =
N−1∑

i=0

(
Ci

i−1∏

j=0

tj
)
. (75)

While theoretically equivalent, the latter is better in practice because it allows us to oppor-
tunistically terminate the integration early when, for instance, the accumulated opacity is high
enough (transmittance is low enough), at which point integrating further makes little numerical
contribution to the result.

22technically the contribution of each small segment between two discrete points because of the Reimann sum.
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Another Discrete Form of VRE

A perhaps more common way to express the discrete VRE is to approximate the average trans-
mittance t using the first two terms of its Taylor series expansion and further assume that the
medium has a low albedo, i.e., σt ≈ σa and σs ≈ 0 (that is, the medium emits and absorbs
only); we have:

1− αi = ti = t(pi → pi+1) = e−σt(pi,ωs)∆s = 1− σt(pi, ωs)∆s+
(σt(pi, ωs)∆s)

2

2
− · · · (76a)

≈ 1− σt(pi, ωs)∆s (76b)

≈ 1− σa(pi, ωs)∆s. (76c)

⇒ αi ≈ σa(pi, ωs)∆s. (76d)

Now, observe that the Li term in Equation 73a is the source term in Equation 67, which
under the low albedo assumption has only the emission term, so:

L =

N−1∑

i=0

(
Li∆s

N−1∏

j=i+1

(1− αj)
)

(77a)

=
N−1∑

i=0

(
σa(pi, ωs)Le(pi, ωs)∆s

N−1∏

j=i+1

(1− αj)
)
, (77b)

=

N−1∑

i=0

(
Le(pi, ωs)αi

N−1∏

j=i+1

(1− αj)
)
. (77c)

If we lump Le(pi, ωs)αi together and call it Ci, the VRE is then expressed as [Levoy, 1988]:

C =

N−1∑

i=0

(
Ciαi

N−1∏

j=i+1

(1− αj)
)
. (78)

Again, this is the back-to-front equation, and the front-to-back counterpart looks like:

C =
N−1∑

i=0

(
Ciαi

i−1∏

j=0

tj
)
. (79)

If you compare the two discrete forms in Equation 74 and Equation 78, it would appear
that the two are not mutually consistent! Of course we know why: 1) Equation 78 applies two
further approximations (low albedo and Taylor series expansion) and 2) the two C terms in the
two equations refer to different physical quantities (compare Equation 73b with Equation 77c).
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1

1  INTRODUCTION
Volume visualization is a method of extracting meaningful

information from volumetric data using interactive graphics and
imaging. It is concerned with volume data representation, model-
ing, manipulation, and rendering [36][137][138][227]. Volume
data are 3D (possibly time-varying) entities that may have infor-
mation inside them, might not consist of tangible surfaces and
edges, or might be too voluminous to be represented geometrically.
They are obtained by sampling, simulation, or modeling tech-
niques. For example, a sequence of 2D slices obtained from Mag-
netic Resonance Imaging (MRI), Computed Tomography (CT),
functional MRI (fMRI), or Positron Emission Tomography (PET),
is 3D reconstructed into a volume model and visualized for diag-
nostic purposes or for planning of treatment or surgery. The same
technology is often used with industrial CT for non-destructive
inspection of composite materials or mechanical parts. Similarly,
confocal microscopes produce data which is visualized to study the
morphology of biological structures. In many computational fields,
such as in computational fluid dynamics, the results of simulations
typically running on a supercomputer are often visualized as vol-
ume data for analysis and verification. Recently, the sub-area of
volume graphics [144] has been expanding, and many traditional
geometric computer graphics applications, such as CAD and flight
simulation, have been exploiting the advantages of volume tech-
niques. 

Over the years many techniques have been developed to ren-
der volumetric data. Since methods for displaying geometric prim-
itives were already well-established, most of the early methods
involve approximating a surface contained within the data using
geometric primitives. When volumetric data are visualized using a
surface rendering technique, a dimension of information is essen-
tially lost. In response to this, volume rendering techniques were
developed that attempt to capture the entire 3D data in a single 2D
image. Volume rendering convey more information than surface
rendering images, but at the cost of increased algorithm complex-
ity, and consequently increased rendering times. To improve inter-
activity in volume rendering, many optimization methods both for
software and for graphics accelerator implementations, as well as
several special-purpose volume rendering machines, have been
developed.

2  VOLUMETRIC DATA
A volumetric data set is typically a set V of samples (x,y,z,v),

also called voxels, representing the value v of some property of the
data, at a 3D location (x,y,z). If the value is simply a 0 or an integer
i within a set I, with a value of 0 indicating background and the
value of i indicating the presence of an object Oi, then the data is
referred to as binary data. The data may instead be multi-valued,
with the value representing some measurable property of the data,
including, for example, color, density, heat or pressure. The value v
may even be a vector, representing, for example, velocity at each
location, results from multiple scanning modalities, such as ana-
tomical (CT, MRI) and functional imaging (PET, fMRI), or color
(RGB) triples, such as the Visible Human cryosection dataset
[122]. Finally, the volume data may be time-varying, in which case
V becomes a 4D set of samples (x,y,z,t,v).

In general, the samples may be taken at purely random loca-
tions in space, but in most cases the set V is isotropic containing
samples taken at regularly spaced intervals along three orthogonal
axes. When the spacing between samples along each axis is a con-
stant, but there may be three different spacing constants for the
three axes the set V is anisotropic. Since the set of samples is
defined on a regular grid, a 3D array (also called the volume buffer,
3D raster, or simply the volume) is typically used to store the val-
ues, with the element location indicating position of the sample on
the grid. For this reason, the set V will be referred to as the array of
values V(x, y, z), which is defined only at grid locations. Alterna-
tively, either rectilinear, curvilinear (structured), or unstructured
grids, are employed (e.g., [306]). In a rectilinear grid the cells are
axis-aligned, but grid spacings along the axes are arbitrary. When
such a grid has been non-linearly transformed while preserving the
grid topology, the grid becomes curvilinear. Usually, the rectilinear
grid defining the logical organization is called computational
space, and the curvilinear grid is called physical space. Otherwise
the grid is called unstructured or irregular. An unstructured or
irregular volume data is a collection of cells whose connectivity
has to be specified explicitly. These cells can be of an arbitrary
shape such as tetrahedra, hexahedra, or prisms.

3  RENDERING VIA GEOMETRIC PRIMITIVES
To reduce the complexity of the volume rendering task, sev-

eral techniques have been developed which approximate a surface
contained within the volumetric data by ways of geometric primi-
tives, most commonly triangles, which can then be rendered using
conventional graphics accelerator hardware. A surface can be
defined by applying a binary segmentation function B(v) to the vol-

Volume Visualization and Volume Graphics
Arie Kaufman and Klaus Mueller

Center for Visual Computing, Computer Science Department, Stony Brook University

Figure 1:  Some images obtained with volume rendering. From left to right: engine block (acquired via industrial CT), human knee, human
head, human skeleton (all acquired via medical CT).

¤�2003 by K. Mueller and A. Kaufman

(a) scientific visualization (b) photorealistic rendering

Figure 17: (a): two examples of scientific visualization (of CT data) using volume rendering;
adapted from Kaufman and Mueller [2003, Fig. 1]. (b): photorealistic volume rendering (a
scene from Disney’s Moana, 2016); from Fong et al. [2017, Fig. 1].

Visualization is Not (Necessarily) Physically-Based Rendering!

These discrete VRE forms might give you the false impression that we have avoided the need
to integrate infinitely many paths, because, computationally, the evaluation of the VRE comes
down to a single-path summation along the ray trajectory. Not really. Calculating the Ci
terms in the new formulations still requires recursion if the results are meant to be physically
accurate. Of course we can side-step this by, e.g., applying the local-illumination approximation,
as mentioned before to avoid recursion.

Scientific visualization offers another opportunity: we can simply assign values to the Cs
and even the αs without regard to physics. The goal of visualization is to discover/highlight
interesting objects and structures while de-emphasizing things that are irrelevant. So the actual
colors are not as important, which gives us great latitude to determine VRE parameters.

Figure 17 compares volume-rendered images for scientific visualization (a) and for photore-
alistic rendering (b). In the case of visualization, the data was a CT-scanned computer-aided
design (CAD) model and a CT-scanned human knee model. In both cases, the outer surface is
not transparent, but is rendered so just because we are interested in seeing the inner structures
that are otherwise occluded. The user makes an executive call to assign a very low transparency
to the bones in the knee model 0 but very a high transparency value to the skin and other tissues:
this is not physically accurate but a good choice for this particular visualization. Photorealistic
rendering, in contrast, has to be physically based, and does not usually have this flexibility. See
figures in Wrenninge and Bin Zafar [2011] and Fong et al. [2017] for more examples.

There are volume rendering software that would allow the users to make such an assignment
depending on what the user wants to highlight and visualize. With certain constraints and
heuristics, one can also procedurally assign the α and C values from the raw measurement data,
usually a density field (see below) acquired from whatever measurement device is used (e.g.,
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CT scanners or MRI machines), using what is called the transfer functions in the literature23.
Making an assignment usually is tied to a classification problem: voxels/points of different
classes should have different assignments.

Density Fields

Physically speaking the medium in RTE/VRE is parameterized by its absorption and scattering
coefficients, which is a product of cross section and concentration, which is sometimes also called
the density. In physically-based volume rendering, this is indeed how the density is used from
the very beginning [Kajiya and Von Herzen, 1984; Blinn, 1982].

In visualization where being physically accurate or photorealistic is unimportant, the notion
of an attenuation coefficient24 loses its physical meaning; it is just a number that controls how the
brightness of a point weakens. People simply call the attenuation coefficient the density [Kauf-
man and Mueller, 2003], presumably because, intuitively, if the particle density is high the color
should be dimmer. If you want to be pedantic, you might say that the attenuation coefficient
depends not only on the density/concentration, but also on the cross section (Equation 40b), so
how can we do that? Remember in visualization one gets to make an executive call and assign
the density value (and thus control α), so it does not really matter if the value itself means
the physical quantity of density/concentration. This is apparent in early work that uses volume
rendering for scientific visualization [Sabella, 1988; Williams and Max, 1992], where attenuation
coefficients are nowhere to be found.

For this reason, the raw volume data obtained from raw measurement device for scientific
(medical) visualization are most often called the density field, even though what is being mea-
sured is almost certainly not the density field but a field of optical properties that are related
to, but certainly do not equate, density. For instance, the raw data you get from a CT scanner
is actually a grid of attenuation coefficients [Bharath, 2009, Chpt. 3].

9.4 Discrete VRE in Neural Rendering

There is another field where the discrete VREs are becoming incredibly popular: neural render-
ing. The two most representative examples are NeRF [Mildenhall et al., 2021] and 3DGS [Kerbl
et al., 2023]. They use the discrete form of the VRE (mostly Equation 79), so the evaluation is
a single-path summation along the ray trajectory without the need for path tracing and solving
the actual RTE/VRE.

The reason they can reduce infinite paths to a single-path evaluation is very similar to that in
scientific visualization, except now instead of assigning the “color” values C and opacity values
α (or equivalently the density field as discussed above), they train a neural network to directly
learn these values. The ground truth in these methods is offline rendered/captured images from

23Some (color) transfer functions could have physical underpinnings, such as applying a single-scattering shad-
ing algorithms (i.e., local illumination); see, e.g., Levoy [1988, Sect. 3] or Max [1995, Sect. 5], but the goal there
is not to precisely model physics but for better, subjective visualization.

24which is the only coefficient needed and which participates in calculating α (Equation 74).
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different camera poses. So they are also a form of image-based rendering or light-field rendering
(Chapter 3.7).

Among many things, one difference between NeRF and 3DGS is one between image-order
rendering and object-order rendering. Image-order rendering cast rays (usually one per pixel
in volume rendering25) to the scene, essentially directly evaluating the discrete VRE. This is
how NeRF-family models operate. In contrast, the object-order rendering projects points in a
medium/volume to the image/sensor plane. A classic technique is called splatting [Westover,
1990], which is used in 3DGS-family models. We will discuss splatting on p. 69, at which point
we will bring up another important distinction between NeRF and 3DGS.

The difference between image-order vs. object-order rendering is a fundamental one, not
limited to NeRF vs. 3DGS. The distinction exists in both traditional (non-neural) volume
rendering, where ray casting vs. splatting are also the two main rendering approaches (see, e.g.,
Engel et al. [2006, Chpt. 1.6] and Kaufman and Mueller [2003, Sect. 6]), and in classical (surface
rather than volume) rendering, where rasterization is an object-order rendering algorithm and
ray tracing is an image-order algorithm.

A huge amount of work is being done on accelerating neural volume rendering models,
both algorithmically and using special hardware, reminiscent of much of the early work on
accelerating volume rendering [Kaufman and Mueller, 2003; Engel et al., 2006, Chpt. 8]. Classic
techniques such as re-sampling/interpolating from pre-computed samples, using hierarchical data
structures, leaping empty spaces/early termination enjoy great success in accelerating neural
volume rendering, too.

VRE for Surface Rendering?

It is interesting to observe that both NeRF and 3DGS (and the vast majority of their later devel-
opments) use VRE to render (opaque) surfaces rather than volumes/media. Is this surprising?
If we are rendering an opaque surface, why would any other point on the ray contribute to color
of the corresponding pixel? Shouldn’t we use the rendering equation?

There are two things to note here. First, from a mathematical and physical perspective,
we should not be surprised at all. We can think of the rendering equation as a special case
of the RTE; ultimately they are both concerned with light transport, whether it is between
surface points or between volume particles. This is precisely why, mathematically, the rendering
equation (Equation 23) very much resembles the VRE (Equation 71), where the result on the
right side of the equations requires an integration of a bunch of stuff on the left side. What the
neural network learns is the stuff to be summed on the right, and whether you interpret them
as things to be summed in the VRE or in the rendering equation is completely up to you.

Second, as far as the neural volume rendering models are concerned, they are using the VRE
just as a way to parameterize the forward model for training. The learned parameters (color and
opacity of each point) should not be interpreted literally in the physical sense. One advantage

25To be physically accurate and photorealistic we need to cast many rays and reconstruct from the ray samples
(anti-aliasing). One ray per pixel is OK if we do not care about physical accuracy/photorealism (e.g., in visual-
ization) or we are training a neural network to render, in which case the network weights, ideally, are trained to
mitigate aliasing.
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of this parameterization is it could be used to render volumes or translucent materials if needed,
in which case the learned parameters might be more amenable to physical interpretations.

Volume Graphics vs. Point-Based Graphics

Related to volume graphics, there is also a subtly different branch of graphics called point-
based graphics (PBG) [Levoy and Whitted, 1985; Gross and Pfister, 2011]. The boundary
is somewhat blurred, but given the way the two terms are usually used, we can observe a
few similarities and distinctions. Both volume graphics and PBG use discrete points as the
rendering primitives (as opposed to continuous surfaces such as a mesh), although the input
points in volume graphics are usually placed on uniform grids [Engel et al., 2006, Chpt. 1.5.2]
whereas points in PBG can be spatially arbitrary.

Traditionally, PBG is almost exclusively used for photorealistic rendering of surfaces. In
fact, the points used in PBG are usually acquired from continuous surfaces as samples on the
surface [Gross and Pfister, 2011, Chpt. 3]. PBG usually uses object-order rendering through
splatting although ray casting is used too, but RTE/VRE is not involved in the rendering
process [Gross and Pfister, 2011, Chpt. 6].

In contrast, the use of volume graphics is much broader. Volume rendering can be used
for photorealistic rendering of participating media and translucent surfaces (by solving the
RTE/VRE), or it can be used for non-photorealistic data visualization (by evaluating the single-
path, discrete VRE), at which point whether the object to be rendered is called a participating
medium, a translucent surface, or anything else is irrelevant, because visualization does not care
much about physics.

3DGS is a somewhat interesting case. It is largely a form of PBG because the rendering
primitives are unaligned points and its splatting technique (Gaussian splatting) resembles that
developed in the PBG literature [Gross and Pfister, 2011, Chpt. 6.1]. However, 3DGS does use
the discrete VRE as the forward model. Again, VRE and splatting are just ways for 3DGS to
parameterize its forward mode, so the comparison with traditional volume graphics and PBG
should not be taken literally.

Splatting is Signal Filtering

Splatting, initially prosed by Westover [1990] for volume rendering, is a common rendering
technique used in PBG and 3DGS-family models for rendering continuous surfaces. How can we
render continuous surfaces from discrete points? If we directly project the points to the sensor
plane, we obviously will get holes, as shown in Figure 18(a). This is of course not an issue if the
rendering primitives are meshes (or procedurally-generated surfaces).

The key is to realize that the fact that we do not have a surface as the rendering primitive
does not mean the surface does not exist. Recall that the points used by PBG are actually
samples on the surface. To render an image pixel is essentially to estimate the color of a surface
point that projects to the pixel (ignoring supersampling for now). From a signal processing
perspective, this is a classic problem of signal filtering: reconstruction and resampling.
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S E C T I O N 6 . 1 SPLATTING FUNDAMENTALS 249
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Figure 6.1: Point rendering by splatting. (a) Naive forward projection and rendering of point samples. (b) By splat-
ting footprint functions each point sample distributes its contribution among neighboring pixels.

grayscale image). For color images, we would simply use three independent channels,
for example, representing red, green, and blue color components. An image of a
point-sampled surface rendered with a splatting algorithm can be represented as

φ(x, y) =
∑

i

ciρi(x, y), (6.1)

where summation is over the indices i of all points {pi}of the surface, ρi are individual
footprint functions, and ci are grayscale values associated with each point.

Unfortunately, Equation (6.1) does not reproduce surfaces with constant values
ci ≡ c, which can lead to visible artifacts. Hence, we extend the basic splatting for-
mulation by normalizing Equation (6.1):

φ(x, y) =

∑
i ciρi(x, y)
∑

i ρi(x, y)
. (6.2)

This guarantees that constant surfaces are reproduced exactly, independent of the
footprint function.

Equation (6.2) suggests a two-pass algorithm for rendering, which is summarized in
Figure 6.2. In the first pass, we iterate over all points and compute their splat foot-
prints ρi and shaded values ci. The footprints are evaluated at each pixel, or raster-
ized, and their contributions are accumulated in a framebuffer. At each pixel (x, y),
the framebuffer stores the sum of the weighted contributions c(x, y) =

∑
i ciρi(x, y),
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Figure 18: (a): directly projecting discrete points to the image plane would create holes
in the rendered image. (b): in splatting, each point is associated with a splat or a footprint
function, which can distribute the color of the point to a spatial region on the image plane; ρi(x)
represents the value of the footprint function of the ith point at position x in the image plane.
(c): splatting essentially allows signal interpolation, which amounts to first reconstructing the
underlying signal from the samples (with potential anti-aliasing filtering) followed by re-sampling
at new, desired positions. (a-b) are from Gross and Pfister [2011, Fig. 6.1].

That is, ideally what we need to do is to reconstruct the underlying signal, i.e., the color
distribution of the continuous surface26, followed by anti-aliasing filters (i.e., convolution) and
then resample the reconstructed/filtered signal at positions corresponding to pixels in an image.
This is shown in Figure 18(c). The name of the game is to design proper filters. The issue
of signal sampling, reconstruction, and resampling is absolutely fundamental to all forms of
photorealistic rendering and not limited to PBG; Pharr et al. [2023, Chpt. 8] and Glassner
[1995, Unit II] are great references.

Another way to think of this is that the color of a surface point is very likely related to
its nearby points that have been sampled as part of the rendering input, so one thing straight-
forward to do is to interpolate from those samples. Signal interpolation is essentially signal

26assuming a diffuse surface so we care to reconstruct the color of each point not the radiance of each ray.
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filtering/convolution.
A splat, or a footprint function in the PBG parlance, associated with each point (surface

sample) essentially distributes the point color to a local region, enabling signal interpolation.
This is shown in Figure 18(b). The exact forms of the footprint functions would determine
the exact forms of the signal filters27. Gaussian filters are particularly common, and Gaussian
splatting is a splatting method that uses Gaussian filters. 3DGS-family models learn the filters
(jointly with the samples!) from data whereas traditionally the filters are more or less designed
empirically by heuristics.

Once you understand splatting, you might notice a very subtle difference in NeRF and 3DGS:
both use the VRE as the forward model, but their uses are slightly different. NeRF uses VRE
in a way similar to how traditionally the discrete VRE is used: approximating a continuous
integral with a discrete summation. 3DGS, however, does not actually need the VRE; what it
does need is signal filtering/interpolation, which requires summing over a set of samples. VRE
happens to sum over a bunch of things and is shown useful in NeRF anyways so it certainly is
not unreasonable for 3DGS to keep using it.

9.5 Integrating Surface Scattering with Volume Scattering

The rendering equation governs the surface scattering or light transport in space, and the
RTE/VRE governs the volume/subsurface scattering or light transport in a medium. Both
processes can be involved in a real-life scene. For instance, the appearance of a translucent
material like a paint or a wax is a combination of both forms of scattering/light transport
(Figure 9). Another example would be rendering smoke against a wall.

Conceptually nothing new needs to be introduced to deal with the two forms of light transport
together. Say we have an opaque surface (a wall) located with a volume (smoke) in the scene.
If we want to calculate the radiance of a ray leaving a point on the wall, we would evaluate the
rendering equation there, and for each incident ray, we might have to evaluate the VRE since
that ray might come from the volume. In practice it amounts to extending the path tracing
algorithm to account for the fact that a path might go through a volume and bounce off between
surface points. See Pharr et al. [2023, Chpt. 14.2] and Fong et al. [2017, Sect. 3] for detailed
discussions.

Another approach, which is perhaps more common when dealing with translucent materials
(whose appearance of course depends on both the surface and subsurface scattering), is through
a phenomenological model based on the notion of Bidirectional Scattering Surface Reflectance
Distribution Function (BSSRDF) [Nicodemus et al., 1977]. The BSSRDF is parameterized
as fs(ps, ωs, pi, ωi), describing the infinitesimal outgoing radiance at ps toward ωs given the
infinitesimal power incident on pi from the direction ωi:

fs(ps, ωs, pi, ωi) =
dL(ps, ωs)

dΦ(pi, ωi)
. (80)

27If all the footprint functions are the same, the effect of splatting is equivalent to applying a single interpolation
filter/convolution kernel, but in PBG each source function can be different.
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BSSRDF can be seen as an extension of BRDF in that it considers the possibility that the
radiance of a ray leaving ps could be influenced by a ray incident on another point pi — because
of SSS/volume scattering. Given the BSSRDF, the rendering equation can be generalized to:

L(po, ωs) =

∫ A ∫ Ω=2π

fs(ps, ωs, pi, ωi)L(pi, ωi) cos θidωidA, (81)

where L(po, ωs) is the outgoing radiance at po toward ωs, L(pi, ωi) is the incident radiance at
pi from ωi, A in the outer integral is the surface area that is under illumination, and Ω = 2π
means that each surface point receives illumination from the entire hemisphere.

We can again use path tracing and Monte Carlo integration to evaluate Equation 81 if we
know the BSSRDF, which can, again, either be analytical derived given certain constraints and
assumptions or measured [Frisvad et al., 2020]. To analytically derive it, one has to consider the
fact that the transfer of energy from an incident ray to an outgoing ray is the consequence of
a cascade of three factors: two surface scattering (refraction) factors, one entering the material
surface pi from ωi and the other leaving the material surface at pi toward po, and a volume
scattering factor that accounts for the subsurface scattering between the incident ray at pi and
the exiting ray at po [Pharr et al., 2018, Chpt. 11.4]. If all three factors have an analytical form,
the final BSSRDF has an analytical form too. This is the approach that, for instance, Jensen
et al. [2001] takes.

10 The Kubelka–Munk Model

As discussed in Chapter 9.1, the general RTE is difficult to solve, and there are two general
strategies. Chapter 9.2 discusses one strategy that numerically approximates the solution using
Monte Carlo methods. Another common strategy is to make some simplified assumptions and/or
apply additional constraints, which would allow us to derive analytical solutions. This section
discusses perhaps the most aggressive form of simplifications that, nevertheless, is very widely
used, especially in printing, painting, and dye industry (and to some extent in graphics).

Kubelka and Munk, two Czechoslovakian Chemists built a phenomenological model that
estimates the spectral reflectance/transmittance of a material [Kubelka and Munk, 1931b,a;
Kubelka, 1948]. Their model cares only about the hemispherical-hemispherical reflectance
(Chapter 4.2), i.e., the ratio of total flux scattered upward to the hemisphere to the total
toward flux incident from the hemisphere. The K-M model also considers that the material un-
der modeling is in immediate contact with a Lambertian substrate that reflects lights uniformly
over all directions. This is a common scenario in scenarios such as paints on a canvas, dyes on
textiles, printer inks on paper, coatings on films, etc.

We will go through an excruciatingly long derivation, but the intuitions behind the derivation
are exactly the same as that of the RTE, because the K-M model is a simplification of the RTE.
The derivation allows us to make clear what simplifications we have made and, thus, when the
model is and is not applicable.
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Figure 19: The setup of deriving the K-M model. We focus on the change of downward
irradiance (E↓) and upward irradiance (E↑) as they travel a thin layer ∆x. We make the
assumption that the material is an isotropic medium and is homogeneous spatially.

10.1 Deriving the Model

Figure 19 illustrates the setup that we will use to derive the model. The first important assump-
tion that the K-M model makes is that the every point on the material surface receives exactly
the same irradiance and that the material itself is homogeneous, consisting of particles that are
statistically randomly distributed and oriented. As a result, there is no difference between dif-
ferent positions at the same depth anywhere inside the material. Of course the radiation field at
different depths are different; at the very least, the deeper you go the fewer photons there is due
to absorption. Another way to think of this that we are intentionally limiting our consideration
to only a small area where there is no spatial difference at the same depth, so we can analyze
information only at different depths rather than different positions at the same depth.

We focus on a very thin layer ∆x; since there is no differences between horizontal positions,
we can arbitrarily pick a point at depth 0 ≤ x ≤ X for analysis, where X is the total depth
(the material surface has x = 0 and the material bottom has x = X). The point at x receives
photons from all directions. Let’s say all the downward photons (going to the lower hemisphere)
have a total irradiance of E↓(x) and all the upward photons (going to the upper hemisphere)
have a total irradiance of E↑(x). The (hemispherical-hemispherical) reflectance at x is then the
ratio of the two:

R(x) =
E↑(x)

E↓(x)
, (82)

and the reflectance at the material surface (which is what the K-M model is interested in
calculating) is R(0).

How do we express E↓(x)? As usual we setup a differential equation to describe the change
of E↓(x). Consider the following conservation of energy when E↓(x) goes through the thin layer
∆x:
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E↓(x+ ∆x)− E↓(x) =−
∫ S2

+

σa(x, ω)∆xL(x, ω)dω (83a)

−
∫ S2

+
∫ S2

+

σs(x, ω)fp(x, ω
′, ω)∆xL(x, ω)dω′dω (83b)

+

∫ S2
−
∫ S2

−
σs(x+ ∆x, ω)fp(x+ ∆x, ω′, ω)∆xL(x+ ∆x, ω)dω′dω,

(83c)

where S2
+ and S2

− represents the upper and lower hemisphere, respectively; L(x, ω) is the radiance
coming from direction ω incident on a point of depth x, fp(x, ω

′, ω) is the phase function between
the incident direction ω and outgoing direction ω′, and σs(x, ω) is the scattering coefficient at x
for an incident direction ω (Chapter 8.2).

The interpretation of this equation is exactly the same as that of the RTE. The equation
essentially says that the downward irradiance after traveling ∆x is (omitting emission):

• reduced by absorption (Equation 83a), which is the absorption component in the RTE;

• reduced by upward scattering (Equation 83b), which is the out-scattering component in
the RTE;

• increased by the downward-scattering of upward irradiance reaching the bottom of the
thin layer (Equation 83c), which is the in-scattering component in RTE.

Now let’s take a closer look at Equation 83a and re-write it:

∫ S2
+

σa(x, ω)∆xL(x, ω)dω (84a)

=σa(x, ω̄)∆x

∫ S2
+

L(x, ω)dω (84b)

=K↓(x)∆xE↓(x), (84c)

K↓(x) =

∫ S2
+ σa(x, ω)L(x, ω)dω

∆xE↓(x)
. (84d)

Equation 84b is derived based on the mean-value theorem28 in integral calculus, which
says that there exists some value of ω̄ ∈ S2

+ that would allow us to take the σa term out of the
integral. Once we do that, the integral in Equation 84b is simply the total downward irradiance,
which we denote E↓(x). If we assume that the material absorption is isotropic, then σa(x, ω̄)

28which says that there exists c ∈ [a, b] such that
∫ b
a
f(x)g(x)dx = f(c)

∫ b
a
g(x)dx, if g(x) is integrable and does

not change its sign in [a, b].
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is independent of ω̄ and is simply a function of x, so we write it as K↓(x), which gives us
Equation 84c.

K↓(x) is a phenomenological coefficient, but it is related to the fundamental absorption
coefficient σa and, thus, carries physical meanings. This is clear from Equation 84d: K↓(x),
by definition, represents the fraction of downward irradiance that is absorbed per unit length.
Therefore, K↓(x) can be intuitively interpreted as the effective downward absorption coefficient
at depth x. Note that while the mean-value theorem tells us that some ω̄ ∈ S2

+ exists, it does
not tell us what its values is. In reality, K↓(x) will very much depend on L(x, ω).

Similarly, we can re-write Equation 83b as:

∫ S2
+
∫ S2

+

σs(x, ω)fp(x, ω
′, ω)∆xL(x, ω)dω′dω (85a)

=

∫ S2
+ (∫ S2

+

σs(x, ω)fp(x, ω
′, ω)dω′

)
∆xL(x, ω)dω (85b)

=

∫ S2
+

σs(x, ω̄)fp(x, ω
′, ω̄)dω′∆x

∫ S2
+

L(x, ω)dω (85c)

=S↓↑(x)∆xE↓(x), (85d)

S↓↑(x) =

∫ S2
+
∫ S2

+ σs(x, ω)fp(x, ω
′, ω)L(x, ω)dω′dω

∆xE↓(x)
. (85e)

Equation 85b simply rearranges the terms in Equation 85a. We then invoke the mean-value
theorem again, which says that there exists ω̄ ∈ S2

+ that allows us to turn Equation 85b to Equa-

tion 85c. We use S↓↑(x) to denote the first integral in Equation 85c: S↓↑(x) =
∫ S2

+ σs(x, ω̄)fp(x, ω
′, ω̄)dω′,

which gets us Equation 85d.
S↓↑(x) is again a phenomenological coefficient that is related to the fundamental scattering

coefficient. Its physical interpretation is clear from Equation 85e: it is the fraction of the
downward irradiance that is scattered upward per unit length. We can think of it as the effective
“upward scattering coefficient of the downward irradiance.”

Finally, we can re-write Equation 83c in a similar way:

∫ S2
−
∫ S2

−
σs(x+ ∆x, ω)fp(x+ ∆x, ω′, ω)∆xL(x+ ∆x, ω)dω′dω (86a)

=

∫ S2
−
σs(x+ ∆x, ω̂)fp(x+ ∆x, ω′, ω̂)dω′∆x

∫ S2
−
L(x+ ∆x, ω)dω (86b)

=S↑↓(x+ ∆x)∆xE↑(x+ ∆x), (86c)

S↑↓(x+ ∆x) =

∫ S2
−
∫ S2
− σs(x+ ∆x, ω)fp(x+ ∆x, ω′, ω)∆xL(x+ ∆x, ω)dω′dω

∆xE↑(x+ ∆x)
, (86d)

S↑↓(x) =

∫ S2
−
∫ S2
− σs(x, ω)fp(x, ω

′, ω)∆xL(x, ω)dω′dω

∆xE↑(x)
. (86e)
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The mean-value theorem says that some ω̂ ∈ S2
− exists that allows us to turn Equation 86a

to Equation 86b. We use S↑↓(x) to denote the first integral in Equation 86b. The second integral
in Equation 86b is essentially the total upward irradiance at the depth x+ ∆x, which we denote
E↑(x+ ∆x).

Now plug Equation 84c, Equation 85d, and Equation 86c back to Equation 88b, we get:

E↓(x+ ∆x) = E↓(x)−K↓(x)∆xE↓(x)− S↓↑(x)∆xE↓(x) + S↑↓(x+ ∆x)∆xE↑(x+ ∆x). (87)

Rewrite it and take the limit as ∆x→ 0:

E↓(x+ ∆x)− E↓(x)

∆x
= −K↓(x)E↓(x)− S↓↑(x)E↓(x) + S↑↓(x+ ∆x)E↑(x+ ∆x), (88a)

dE↓(x)

dx
= −K↓(x)E↓(x)− S↓↑(x)E↓(x) + S↑↓(x)E↑(x). (88b)

Similarly we can express the rate of change of the upward irradiance E↑(x) based on the
same energy conservation dynamics:

dE↑(x)

dx
= K↑(x)E↑(x) + S↑↓(x)E↑(x)− S↓↑(x)E↓(x), (89)

where the three terms on the right-hand size, again, represent the absorption, out-scattering,
and in-scattering in the original RTE.

Now a few more assumptions. If we assume that the material absorption is isotropic (the
total absorption per unit length is invariant to incident light direction over the entire sphere),
we have K↑(x) = K↓(x) because:

K↑(x) = σa(x, ω̂) = σa(x, ω̄) = K↓(x), (90)

for some ω̂ ∈ S2
− and ω̄ ∈ S2

+.
If we further assume that 1) the material is an isotropic scattering medium, then σs(x, ω) is

invariant to ω (the total amount of scattering per unit length does not change with the incident
light direction over the entire sphere), and 2) the particles are also isotropic scatters (which
theoretically do not exist), then fp(x, ω

′, ω) is a constant ( 1
4π ). Therefore, S↑↓(x) = S↓↑(x),

because:

S↑↓(x) =

∫ S2
−
σs(x, ω̂)fp(x, ω

′, ω̂)dω′ (91a)

= σs(x, ω̂)

∫ S2
−
fp(x, ω

′, ω̂)dω′ = σs(x, ω̂)/2 (91b)

= σs(x, ω̄)

∫ S2
−
fp(x, ω

′, ω̄)dω′ = σs(x, ω̄)/2 (91c)

= S↓↑(x), (91d)
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for some ω̂ ∈ S2
− and ω̄ ∈ S2

+.
A few notes on the assumptions here:

• The assumption of isotropic scatters is important; assuming only an isotropic medium is
not enough. This is because the integrals in Equation 91 integrate only the upper (or
lower) hemisphere rather than the entire sphere, so if the phase function itself is not a
constant, the integral result will still depend on ω̄ or ω̂. See the distinction between an
isotropic medium and an isotropic scatter on p. 54.

• Alternatively, if the particles are not isotropic scatters, S↑↓(x) = S↓↑(x) can still hold if
we assume that the upward and downward irradiance are both diffuse, i.e., the radiance
L(x, ω) is invariant to ω. The isotropic medium assumption still needs to hold. This can be
proven by going back to the respective definition of S↑↓(x) and S↓↑(x) in Equation 85e and
Equation 86e29. Interestingly, if the particles are isotropic scatters, the outgoing irradiance
will necessarily be diffuse.

• Yet another way for S↑↓(x) = S↓↑(x) is if we are considering a very idealized scenario
where photons travel and are scattered only upward or downward [Bohren and Clothiaux,
2006, Chpt. 5.2]. If the medium is also isotropic (but does not have to consist of isotropic
scatters), the fraction of the upward irradiance turned downward would be the same as
the fraction of the downward irradiance turned upward, so S↑↓(x) = S↓↑(x).

Finally, given the assumption that the material is spatially homogeneous, both σa, σs, and
fp are all independent of x. Therefore, we can denote K = K↑(x) = K↓(x) and S = S↑↓(x) =
S↓↑(x). K and S are simply called the absorption and scattering coefficient, respectively, of the
medium, but we now should know that they are of the phenomenological nature and, with all the
simplifications above, are derived from the fundamental optical absorption/scattering properties
of the medium (see Equation 90 and Equation 91).

Now we combine Equation 88b and Equation 89 and get to the famous pair of differential
equations underlying the K-M model:

dE↓(x)

dx
= −(K + S)E↓(x) + SE↑(x), (92a)

dE↑(x)

dx
= (K + S)E↑(x)− SE↓(x). (92b)

10.2 The Model and Its Interpretation

Equation 92 gives us a pair of linear differential equations. What we are interested in solving

for is R(0) =
E↑(0)
E↓(0) . The boundary condition is that R(X) = Rg, which is the (assumed-to-be)

known reflectance of the substrate. Solving the differential equations gives us:

29If L(x, ω) is invariant to ω and fp(x, ω
′, ω̂), under the isotropic medium assumption, is reduced to fp(x, θ),

where θ is the angle subtended by ω and ω′, both S↑↓(x) and S↓↑(x) are essentially calculating
∫ π ∫ π

c dθdθ′.
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R(0) =
E↑(0)

E↓(0)
=

1−Rg[a− b coth(bSX)]

a−Rg + b coth(bSX)
, (93a)

T (X) =
E↓(X)

E↓(0)
=

b

a sinh(bSX) + b cosh(bSX)
, (93b)

a =
K + S

S
, (93c)

b =
√
a2 − 1, (93d)

where R(0) is the hemispherical-hemispherical reflectance at the material surface and T (X) is the
hemispherical-hemispherical transmittance at the bottom of the material30; coth(·) is the hyper-
bolic cotangent function, sinh(·) is the hyperbolic sine function, and cosh(·) is the hyperbolic co-
sine function. Note that we omit λ for simplicity but keep in mind that R(0), T (X), S,K,Rg, a, b
are all spectral quantities.

Equation 93 is the famous K-M model. Consider the case where the material is purely
absorptive and scatters little (e.g., dyes on textiles or fabrics), so S is close to 0 and the reflectance
is simplified to:

R(0) = Rge
−2KX = e−KXRge

−KX . (94)

We can understand RX by decomposing it into the product of three terms, each representing
a step in the overall, observed reflection. First, photons go through the material from the top
down, being absorbed as they go. The percentage of photons that are still left (i.e., unabsorbed)
just before they hit the substrate is e−KX , which is consistent with the Beer-Lambert law.
Second, the substrates reflects Rg amount of lights back toward the material. Finally, as the
photons make their way back to the surface they go through another around of absorption
governed by the same Beer-Lambert law (Chapter 7.1).

Now consider the case where there is no substrate or when the substrate is a perfect black
substrate; in both cases Rg = 0. Reflectance is now:

Rblack =
1

a+ b coth(bSX)
. (95)

Finally, consider the case where the material is so thick that no photon reaches the substrate.
In this case, the reflectance is not affected by the substrate and can be simplified to (by letting
X approach infinity):

lim
X→∞

= R∞ =
1

a+ b
= 1 +

K

S
−
√(K

S

)2
+ 2

K

S
. (96)

30You can see that T (X) does not involve Rg: when we calculate the transmittance of the material we assume
that there is no substrate.
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In the painting industry, we say the paint’s “hiding is complete” when the substrate does
not influence the material color. We can quantify the “hiding power” of a paint by H = Rwhite

Rblack
,

i.e., the ratio of reflectance between when the substrate is black (absorbs everything) and white
(reflects everything back). If the hiding is complete, H would be 1.

You might be wondering how we know K and S of a material — we measure them. For
instance, observe Equation 95 and Equation 96; we can measure the reflectance Rblack when the
substrate is nearly black and the reflectance R∞ when the hiding is near complete. We can then
solve the system of equations to estimate K and S.

You can see that we are not actually taking a very thin layer of particles, illuminating it,
and then measuring how much of the light is scattered vs. absorbed. Instead, we estimate K
and S macroscopically. We have in mind a model (a set of equations or functions if you will)
that are parameterized by unknown variables. We then probe the model by giving it different
inputs and measure the outputs. From the input-output pairs we can then estimate the unknown
parameters. This is why a model so defined and derived is called a phenomenological model and
the parameters (e.g., the K and S coefficients) are called the phenomenological parameters —
because all we do is to observe the phenomena.

10.3 K-M Model for Mixture of Materials

The basic K-M model can be extended to account for materials that consist of a mixture of
materials, each with a different absorption/scattering behaviors. This is done by first expressing
the overall phenomenological absorption and scattering coefficients of the medium, and then
plug them into the K-M model.

Specifically, if we are mixing N materials, each with a phenomenological absorption and
scattering coefficient Ki and Si, the overall absorption and scattering coefficient of the material
is:

K =

N∑

i=1

ηiKi, (97a)

S =
N∑

i=1

ηiSi, (97b)

where ηi is the volume concentration of the ith material in the overall material mixture, and is
defined as:

ηi =
Vi∑N
j=1 Vj

, (98)

where Vj is the volume of the jth material. Once we have the K and S coefficients, we simply
invoke Equation 93 to calculate the reflectance/transmittance of the material mixture.
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Why would it make sense to calculate the overallK and S using the volume-weighting method
in Equation 97? Let’s derive it using absorption as an example. The overall absorption coefficient
K of the material mixture is also the optical absorption coefficient σa of the mixture (given the
set of assumptions we have made so far; see Equation 90), which is given by Equation 47 as:

K = σa =
N∑

i

ciεi, (99)

where ci and εi are the number concentration and the absorption cross section of the ith material
in the material mixture. Specifically, ci is defined as:

ci =
ni∑N
j=1 Vj

=
Vi∑N
j=1 Vj

ni
Vi
, (100)

where ni is the number of particles of the ith material in the mixture. We assume that when
we mix N materials, their volumes add. That is, the volume of the mixture is the sum of that
of the individual materials. This is in general true if different materials do not chemically react
and that one does not dissolve in another. Therefore:

K =
N∑

i

ciεi (101a)

=

N∑

i

Vi∑N
j=1 Vj

ni
Vi
εi (101b)

=
N∑

i

ηiKi. (101c)

Going from Equation 101b to Equation 101c, again, uses the fact (Equation 90) that the
phenomenological absorption coefficient of the ith material Ki is the same as its optical absorp-
tion coefficient σa,i = ciεi, where ci = ni

Vi
is the number concentration of the ith material (note

the subtle difference of ci here and ci in Equation 100).

10.4 N-Stream Model

The basic K-M model is called the two-stream or two-flux model, because it considers only
the total upward irradiance and total downward irradiance. We basically have divided all the
directions possible in the space into only two solid angles, the upper hemisphere and the lower
hemisphere. What if we want to know the irradiance at a finer granularity (i.e., over a smaller
solid angle)? We divide all the direction into more solid angles, and analyze the irradiance
change in them using a similar method.
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34 Optical modelling: an overview

Figure 4.1: The division of the directions in space into channels (provided by

H. Granberg).

The number of channel divisions depends on the nature of the application.
Many papers involving radiative transfer calculations have been written by
authors using 2, 3, or 4 channels [Sch05, MR71]. A general mathematical
treatment using this coordinate discretion, was first developed by Wick [Wic43].
It was then thoroughly exploited by Chandrasekhar [Cha44] and applied to the
problem of radiative transfer.

Mudgett and Richards [MR71, MR72] reformulated this method in a more
comprehensive way and applied it to parallel layered media, such as paint
film [Ric70]. Their work was well followed up by other authors in modelling
and predicting the optical characteristics of paint films [JVS00, All73].

In principle, by applying the Multi-flux approach with a sufficient number
of channels, one can accurately solve the radiative transfer problem. Never-
theless, the solution depends directly on the knowledge of the phase function.
Therefore, finding the proper phase functions for different types of papers is
essential for optical modelling and simulations.

4.4 Kubelka-Munk method

The Kubelka-Munk (K-M) approach is actually a two-flux version of the multi-
flux method for solving the radiative transfer problem. Here the ordinate is
only divided up into an up- and a low-hemisphere by the bounding plane (paper

Figure 20: The setup for the N-flux model. All the possible directions (consider all the arrows
that can possible go out from the origin) are divided into “channels” or “streams”, each of which
represents a finite solid angle within which an irradiance travel. The N-flux model models the
changes of each of these irradiances. Adapted from Li [2003, Fig. 4.1].

For instance, if we now consider irradiance in four directions: E↖(x), E↗(x), E↘(x), and
E↙(x), we can write the change of the irradiance in E↘(x) as:

dE↘(x)

dx
=−K↘(x)E↘(x)

+ S↖↘(x)E↖(x) + S↗↘(x)E↗(x) + S↙↘(x)E↙(x)

− S↘↖(x)E↘(x)− S↘↗(x)E↘(x)− S↘↙(x)E↘(x), (102)

where S↖↘ is the scattering coefficient of from the northwest irradiance to the southeast direc-
tion, and so on. We can express the changes of the other three directions similarly. In general, if
we divide the space into N “channels”, each representing a set of direction (a finite solid angle),
we can extend the two-flux model to a “N-flux” model.

Figure 20 shows the setup for deriving the N-flux model, where all the possible directions
(consider all the arrows that can possible go out from the origin) are divided into “channels”
or “streams”, each of which represents a finite solid angle within which an irradiance travel.
The figure visualizes eight such channels. The change of each channel is modeled by taking
away from each channel photons that are absorbed and scattered to all other channels and by
adding photons scattered in to the channel from all other channels. In the end, we get N linear
differential equations. Equation 102 is one such equation when N = 4. The channels are usually
rotationally symmetric about the z-axis, assuming that the material is rotationally symmetric
about the z-axis.
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Comparing against the RTE in Equation 70, which has an integral term Ls given in Equa-
tion 67. What the N-flux model does is to essentially approximate that integral with a finite
sum. In general, the larger the N the better the approximation but also the more computation-
ally intensive to solve. We will omit a formal treatment but refer you to Bohren and Clothiaux
[2006, Chpt. 6.1], Volz and Simon [2001, Chpt. 3.1.2], and Klein [2010, Chpt. 5.5] for details.

10.5 Correction for Surface Reflection

One thing that is ignored in the K-M model is the surface reflection/refraction yet. Part of
the photons will be reflected away at the air/material interface before they enter the material.
Similarly, when we consider the transmittance we have ignored the reflection/refraction at the
other side of the material. So the reflectance and transmittance calculated by the K-M model
are defined at the point when the photons are just about to leave the material.

To account for the surface phenomena, we can apply what is called the Saunderson correction,
derived by Saunderson [1942]. See Sharma [2003, Chpt. 3.6.3] for a derivation, but briefly if the
illumination is diffuse, the corrected surface reflectance is:

R = rs +
(1− rs)(1− ri) R(0)

1− ri R(0)
, (103)

where R(0) is the reflectance given by the K-M model, rs is the fraction of incident irradiance
scattered by the air-material surface and ri is the fraction of the internal irradiance approaching
the air-material interface that is scattered back by the interface. Assuming a smooth surface,
both rs and ri can be calculated by the Fresnel equations given the refractive index of the
material (Chapter 4.4).
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